Abstract
Octopamine (OA) levels in each ganglion of the terrestrial snail, Helix pomatia, and the pond snail, Lymnaea stagnalis, were measured by using the HPLC technique. In both species an inhomogeneous distribution of OA was found in the central nervous system. The buccal ganglia contained a concentration of OA (12.6 pmol mg-1 and 18.8 pmol mg-1) that was two to three times higher than the pedal (4.93 pmol mg-1 and 9.2 pmol mg-1) or cerebral (4.46 pmol mg-1 and 4.9 pmol mg-1) ganglia of Helix and Lymnaea, respectively, whereas no detectable amount of OA could be assayed in the visceroparietal complex. In Lymnaea ganglia, the OA uptake into the synaptosomal fraction had a high (Km1 = 4.07 ± 0.51 μM, Vmax1 = 0.56 ± 0.11 pmol mg-1 per 20 min), and a low (Km2 = 47.6 ± 5.2 μM, Vmax2 = 4.2 ± 0.27 pmol mg-1 per 20 min), affinity component. A specific and dissociable 3H-OA binding to the membrane pellet prepared from the CNS of both Helix and Lymnaea was demonstrated. The Scatchard analysis of the ligand binding data showed a one-binding site, representing a single receptor site. The Kd and Bmax values were found to be 33.7 ± 5.95 nM and 1678 ± 179 fmol g-1 tissue in Helix and 84.9 ± 17.4 nM and 3803 ± 515 fmol g-1 tissue in Lymnaea preparation. The pharmacological properties of the putative molluscan OA receptor were characterized in both species and it was demonstrated that the receptor resembled the insect OA2 rather than to the cloned Lymnaea OA receptor. Immunocytochemical labelling demonstrated the presence of OA-immunoreactive neurons and fibres in the buccal, cerebral and pedal ganglia in the central nervous system of both species investigated. Electrophysiological experiments also suggested that the Lymnaea brain possessed specific receptors for OA. Local application of OA onto the identified buccal B2 neuron evoked a hyperpolarization which could selectively be inhibited by the OAergic agents phentolamine, demethylchlordimeform and 2-chloro-4-methyl-2-(phenylimino)-imidazolidine. Among the dopamine antagonists, ergotamine reversibly inhibited the OA response, whereas sulpiride had no effect. Based on our findings, a neurotransmitter-modulator role of OA is suggested in the gastropod CNS.
Full Text
The Full Text of this article is available as a PDF (250.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Audesirk T. E. Characterization of pre- and postsynaptic dopamine receptors in Lymnaea. Comp Biochem Physiol C. 1989;93(1):115–119. doi: 10.1016/0742-8413(89)90020-0. [DOI] [PubMed] [Google Scholar]
- Axelrod J., Saavedra J. M. Octopamine. Nature. 1977 Feb 10;265(5594):501–504. doi: 10.1038/265501a0. [DOI] [PubMed] [Google Scholar]
- Bahls F. H. Analysis of a long-duration hyperpolarization produced by octopamine in an identified effector neuron of Helisoma. Neurosci Lett. 1990 Nov 27;120(1):131–133. doi: 10.1016/0304-3940(90)90186-d. [DOI] [PubMed] [Google Scholar]
- Batta S., Walker R. J., Woodruff G. N. Pharmacological studies on Helix neuron octopamine receptors. Comp Biochem Physiol C. 1979;64(1):43–51. doi: 10.1016/0306-4492(79)90027-3. [DOI] [PubMed] [Google Scholar]
- Carpenter D. O., Gaubatz G. L. Octopamine receptors on Aplysia neurones mediate hyperpolarisation by increasing membrane conductance. Nature. 1974 Dec 6;252(5483):483–485. doi: 10.1038/252483a0. [DOI] [PubMed] [Google Scholar]
- David J. C., Coulon J. F. Octopamine in invertebrates and vertebrates. A review. Prog Neurobiol. 1985;24(2):141–185. doi: 10.1016/0301-0082(85)90009-7. [DOI] [PubMed] [Google Scholar]
- Dresdner K., Barker L. A., Orlowski M., Wilk S. Subcellular distribution of prolyl endopeptidase and cation-sensitive neutral endopeptidase in rabbit brain. J Neurochem. 1982 Apr;38(4):1151–1154. doi: 10.1111/j.1471-4159.1982.tb05362.x. [DOI] [PubMed] [Google Scholar]
- Drummond A. H., Bucher F., Levitan I. B. Distribution of serotonin and dopamine receptors in Aplysia tissues: analysis by [3H]LSD binding and adenylate cyclase stimulation. Brain Res. 1980 Feb 17;184(1):163–177. doi: 10.1016/0006-8993(80)90595-8. [DOI] [PubMed] [Google Scholar]
- Dudai Y. High-affinity octopamine receptors revealed in Drosophila by binding or [3H]octopamine. Neurosci Lett. 1982 Feb 12;28(2):163–167. doi: 10.1016/0304-3940(82)90146-x. [DOI] [PubMed] [Google Scholar]
- ERSPAMER V., BORETTI G. Identification and characterization, by paper chromatography, of enteramine, octopamine, tyramine, histamine and allied substances in extracts of posterior salivary glands of octopoda and in other tissue extracts of vertebrates and invertebrates. Arch Int Pharmacodyn Ther. 1951 Dec;88(3):296–332. [PubMed] [Google Scholar]
- Eckert M., Rapus J., Nürnberger A., Penzlin H. A new specific antibody reveals octopamine-like immunoreactivity in cockroach ventral nerve cord. J Comp Neurol. 1992 Aug 1;322(1):1–15. doi: 10.1002/cne.903220102. [DOI] [PubMed] [Google Scholar]
- Elekes K., Eckert M., Rapus J. Small sets of putative interneurons are octopamine-immunoreactive in the central nervous system of the pond snail, Lymnaea stagnalis. Brain Res. 1993 Apr 16;608(2):191–197. doi: 10.1016/0006-8993(93)91458-5. [DOI] [PubMed] [Google Scholar]
- Elekes K., Kemenes G., Hiripi L., Geffard M., Benjamin P. R. Dopamine-immunoreactive neurones in the central nervous system of the pond snail Lymnaea stagnalis. J Comp Neurol. 1991 May 8;307(2):214–224. doi: 10.1002/cne.903070205. [DOI] [PubMed] [Google Scholar]
- Elekes K., Voronezhskaya E. E., Hiripi L., Eckert M., Rapus J. Octopamine in the developing nervous system of the pond snail, Lymnaea stagnalis L. Acta Biol Hung. 1996;47(1-4):73–87. [PubMed] [Google Scholar]
- Elliott C. J., Stow R. A., Hastwell C. Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. I. Cholinergic receptors on feeding neurons. Philos Trans R Soc Lond B Biol Sci. 1992 May 29;336(1277):157–166. doi: 10.1098/rstb.1992.0053. [DOI] [PubMed] [Google Scholar]
- Evans P. D. Multiple receptor types for octopamine in the locust. J Physiol. 1981 Sep;318:99–122. doi: 10.1113/jphysiol.1981.sp013853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans P. D., Robb S. Octopamine receptor subtypes and their modes of action. Neurochem Res. 1993 Aug;18(8):869–874. doi: 10.1007/BF00998270. [DOI] [PubMed] [Google Scholar]
- Gerhardt C. C., Bakker R. A., Piek G. J., Planta R. J., Vreugdenhil E., Leysen J. E., Van Heerikhuizen H. Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharmacol. 1997 Feb;51(2):293–300. doi: 10.1124/mol.51.2.293. [DOI] [PubMed] [Google Scholar]
- Gerhardt C. C., Lodder H. C., Vincent M., Bakker R. A., Planta R. J., Vreugdenhil E., Kits K. S., van Heerikhuizen H. Cloning and expression of a complementary DNA encoding a molluscan octopamine receptor that couples to chloride channels in HEK293 cells. J Biol Chem. 1997 Mar 7;272(10):6201–6207. doi: 10.1074/jbc.272.10.6201. [DOI] [PubMed] [Google Scholar]
- Gospe S. M., Jr, Wilson W. A., Jr Pharmacological studies of a novel dopamine-sensitive receptor mediating burst-firing inhibition of neurosecretory cell R 15 in Aplysia californica. J Pharmacol Exp Ther. 1981 Feb;216(2):368–377. [PubMed] [Google Scholar]
- Guthrie P. B., Neuhoff V., Osborne N. N. Dopamine, noradrenaline, octopamine and tyrosine-hydroxylase in the gastropod Helix pomatia. Comp Biochem Physiol C. 1975 Dec 1;52(2):109–111. doi: 10.1016/0306-4492(75)90023-4. [DOI] [PubMed] [Google Scholar]
- Hashemzadeh H., Hollingworth R. M., Voliva A. Receptors for 3H-octopamine in the adult firefly light organ. Life Sci. 1985 Aug 5;37(5):433–440. doi: 10.1016/0024-3205(85)90405-9. [DOI] [PubMed] [Google Scholar]
- Hayashi S., Murdock L. L., Florey E. Octopamine metabolism in invertebrates (Locusta, Astacus, Helix): evidence for N-acetylation in arthropod tissues. Comp Biochem Physiol C. 1977;58(2C):183–191. doi: 10.1016/0306-4492(77)90102-2. [DOI] [PubMed] [Google Scholar]
- Hiripi L., Juhos S., Downer R. G. Characterization of tyramine and octopamine receptors in the insect (Locusta migratoria migratorioides) brain. Brain Res. 1994 Jan 7;633(1-2):119–126. doi: 10.1016/0006-8993(94)91530-x. [DOI] [PubMed] [Google Scholar]
- Juorio A. V., Molinoff P. B. The normal occurrence of octopamine in neural tissue of the Octopus and other cephalopods. J Neurochem. 1974 Feb;22(2):271–280. doi: 10.1111/j.1471-4159.1974.tb11590.x. [DOI] [PubMed] [Google Scholar]
- Kemenes G., Elekes K., Hiripi L., Benjamin P. R. A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail, Lymnaea. J Neurocytol. 1989 Apr;18(2):193–208. doi: 10.1007/BF01206662. [DOI] [PubMed] [Google Scholar]
- Laduron P. M. Criteria for receptor sites in binding studies. Biochem Pharmacol. 1984 Mar 15;33(6):833–839. doi: 10.1016/0006-2952(84)90436-2. [DOI] [PubMed] [Google Scholar]
- Nesić O., Pasić M. Characteristics of outward current induced by application of dopamine on a snail neuron. Comp Biochem Physiol C. 1992 Nov;103(3):597–606. [PubMed] [Google Scholar]
- Osborne N. N., Hiripi L., Neuhoff V. The in vitro uptake of biogenic amines by snail (Heliz pomatia) nervous tissue. Biochem Pharmacol. 1975 Dec 1;24(23):2141–2148. doi: 10.1016/0006-2952(75)90043-x. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rstb.1998.0315. [DOI] [PMC free article] [Google Scholar]
- Roeder T., Gewecke M. Octopamine receptors in locust nervous tissue. Biochem Pharmacol. 1990 Jun 1;39(11):1793–1797. doi: 10.1016/0006-2952(90)90127-7. [DOI] [PubMed] [Google Scholar]
- Schot L. P., Boer H. H., Swaab D. F., Van Noorden S. Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail Lymnaea stagnalis with antisera raised to biologically active peptides of vertebrates. Cell Tissue Res. 1981;216(2):273–291. doi: 10.1007/BF00233620. [DOI] [PubMed] [Google Scholar]
- Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
- Vehovszky A., Elliott C. J. The hybrid modulatory/pattern generating N1L interneuron in the buccal feeding system of Lymnaea is cholinergic. Invert Neurosci. 1995;1(1):67–74. doi: 10.1007/BF02331833. [DOI] [PubMed] [Google Scholar]
- Walker R. J., Ramage A. G., Woodruff G. N. The presence of octopamine in the brain of Helix aspersa and its action on specific snail neurones. Experientia. 1972 Oct 15;28(10):1173–1174. doi: 10.1007/BF01946151. [DOI] [PubMed] [Google Scholar]
