Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Oct 29;353(1376):1685–1693. doi: 10.1098/rstb.1998.0319

Why are there so few resistance-associated mutations in insecticide target genes?

R H ffrench-Constant 1, B Pittendrigh 1, A Vaughan 1, N Anthony 1
PMCID: PMC1692388  PMID: 10021768

Abstract

The genes encoding the three major targets of conventional insecticides are: Rdl, which encodes a gamma-aminobutyric acid receptor subunit (RDL); para, which encodes a voltage-gated sodium channel (PARA); and Ace, which encodes insect acetylcholinesterase (AChE). Interestingly, despite the complexity of the encoded receptors or enzymes, very few amino acid residues are replaced in different resistant insects: one within RDL, two within PARA and three or more within AChE. Here we examine the possible reasons underlying this extreme conservation by looking at the aspects of receptor and/or enzyme function that may constrain replacements to such a limited number of residues.

Full Text

The Full Text of this article is available as a PDF (198.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony N., Rocheleau T., Mocelin G., Lee H. J., ffrench-Constant R. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Lett. 1995 Jul 24;368(3):461–465. doi: 10.1016/0014-5793(95)00711-h. [DOI] [PubMed] [Google Scholar]
  2. Aronstein K., Auld V., Ffrench-Constant R. Distribution of two GABA receptor-like subunits in the Drosophila CNS. Invert Neurosci. 1996 Sep;2(2):115–120. doi: 10.1007/BF02214114. [DOI] [PubMed] [Google Scholar]
  3. Aronstein K., Ffrench-Constant R. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invert Neurosci. 1995;1(1):25–31. doi: 10.1007/BF02331829. [DOI] [PubMed] [Google Scholar]
  4. Ayad H., Georghiou P. Resistance to organophosphates and carbamates in Anopheles albimanus Based on reduced sensitivity of acetylcholinesterase. J Econ Entomol. 1975 Jun;68(3):295–297. doi: 10.1093/jee/68.3.295. [DOI] [PubMed] [Google Scholar]
  5. Bourguet D., Raymond M., Fournier D., Malcolm C. A., Toutant J. P., Arpagaus M. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J Neurochem. 1996 Nov;67(5):2115–2123. doi: 10.1046/j.1471-4159.1996.67052115.x. [DOI] [PubMed] [Google Scholar]
  6. Bourguet D, Pasteur N, Bisset J, Raymond M. Determination of Ace.1 Genotypes in Single Mosquitoes: Toward an Ecumenical Biochemical Test. Pestic Biochem Physiol. 1996 Jun;55(2):122–128. doi: 10.1006/pest.1996.0041. [DOI] [PubMed] [Google Scholar]
  7. Cannon S. C., Brown R. H., Jr, Corey D. P. A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron. 1991 Apr;6(4):619–626. doi: 10.1016/0896-6273(91)90064-7. [DOI] [PubMed] [Google Scholar]
  8. Dong K. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem Mol Biol. 1997 Feb;27(2):93–100. doi: 10.1016/s0965-1748(96)00082-3. [DOI] [PubMed] [Google Scholar]
  9. Dong K., Scott J. G. Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroaches (Blattella germanica). Insect Biochem Mol Biol. 1994 Jul;24(7):647–654. doi: 10.1016/0965-1748(94)90051-5. [DOI] [PubMed] [Google Scholar]
  10. Feyereisen R. Molecular biology of insecticide resistance. Toxicol Lett. 1995 Dec;82-83:83–90. doi: 10.1016/0378-4274(95)03470-6. [DOI] [PubMed] [Google Scholar]
  11. Ffrench-Constant R. H., Bonning B. C. Rapid microtitre plate test distinguishes insecticide resistant acetylcholinesterase genotypes in the mosquitoes Anopheles albimanus, An. nigerrimus and Culex pipiens. Med Vet Entomol. 1989 Jan;3(1):9–16. doi: 10.1111/j.1365-2915.1989.tb00468.x. [DOI] [PubMed] [Google Scholar]
  12. Ffrench-Constant R. H., Mortlock D. P., Shaffer C. D., MacIntyre R. J., Roush R. T. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7209–7213. doi: 10.1073/pnas.88.16.7209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ffrench-Constant R. H., Rocheleau T. A., Steichen J. C., Chalmers A. E. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993 Jun 3;363(6428):449–451. doi: 10.1038/363449a0. [DOI] [PubMed] [Google Scholar]
  14. Guerrero F. D., Jamroz R. C., Kammlah D., Kunz S. E. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect Biochem Mol Biol. 1997 Aug-Sep;27(8-9):745–755. doi: 10.1016/s0965-1748(97)00057-x. [DOI] [PubMed] [Google Scholar]
  15. Haas R., Marshall T. L., Rosenberry T. L. Drosophila acetylcholinesterase: demonstration of a glycoinositol phospholipid anchor and an endogenous proteolytic cleavage. Biochemistry. 1988 Aug 23;27(17):6453–6457. doi: 10.1021/bi00417a038. [DOI] [PubMed] [Google Scholar]
  16. Hall L. M., Malcolm C. A. The acetylcholinesterase gene of Anopheles stephensi. Cell Mol Neurobiol. 1991 Feb;11(1):131–141. doi: 10.1007/BF00712805. [DOI] [PubMed] [Google Scholar]
  17. Hall L. M., Spierer P. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5' leader. EMBO J. 1986 Nov;5(11):2949–2954. doi: 10.1002/j.1460-2075.1986.tb04591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hosie A. M., Aronstein K., Sattelle D. B., ffrench-Constant R. H. Molecular biology of insect neuronal GABA receptors. Trends Neurosci. 1997 Dec;20(12):578–583. doi: 10.1016/s0166-2236(97)01127-2. [DOI] [PubMed] [Google Scholar]
  19. Isacoff E. Y., Jan Y. N., Jan L. Y. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature. 1991 Sep 5;353(6339):86–90. doi: 10.1038/353086a0. [DOI] [PubMed] [Google Scholar]
  20. Knipple D. C., Doyle K. E., Marsella-Herrick P. A., Soderlund D. M. Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2483–2487. doi: 10.1073/pnas.91.7.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kohrman D. C., Smith M. R., Goldin A. L., Harris J., Meisler M. H. A missense mutation in the sodium channel Scn8a is responsible for cerebellar ataxia in the mouse mutant jolting. J Neurosci. 1996 Oct 1;16(19):5993–5999. doi: 10.1523/JNEUROSCI.16-19-05993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee H. J., Rocheleau T., Zhang H. G., Jackson M. B., ffrench-Constant R. H. Expression of a Drosophila GABA receptor in a baculovirus insect cell system. Functional expression of insecticide susceptible and resistant GABA receptors from the cyclodiene resistance gene Rdl. FEBS Lett. 1993 Dec 13;335(3):315–318. doi: 10.1016/0014-5793(93)80409-n. [DOI] [PubMed] [Google Scholar]
  23. Leonard R. J., Labarca C. G., Charnet P., Davidson N., Lester H. A. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science. 1988 Dec 16;242(4885):1578–1581. doi: 10.1126/science.2462281. [DOI] [PubMed] [Google Scholar]
  24. Loughney K., Kreber R., Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989 Sep 22;58(6):1143–1154. doi: 10.1016/0092-8674(89)90512-6. [DOI] [PubMed] [Google Scholar]
  25. Martinez-Torres D., Chandre F., Williamson M. S., Darriet F., Bergé J. B., Devonshire A. L., Guillet P., Pasteur N., Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998 May;7(2):179–184. doi: 10.1046/j.1365-2583.1998.72062.x. [DOI] [PubMed] [Google Scholar]
  26. McClatchey A. I., McKenna-Yasek D., Cros D., Worthen H. G., Kuncl R. W., DeSilva S. M., Cornblath D. R., Gusella J. F., Brown R. H., Jr Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat Genet. 1992 Oct;2(2):148–152. doi: 10.1038/ng1092-148. [DOI] [PubMed] [Google Scholar]
  27. Miyazaki M., Ohyama K., Dunlap D. Y., Matsumura F. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol Gen Genet. 1996 Aug 27;252(1-2):61–68. [PubMed] [Google Scholar]
  28. Mutero A., Pralavorio M., Bride J. M., Fournier D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5922–5926. doi: 10.1073/pnas.91.13.5922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Newland C. F., Cull-Candy S. G. On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurones of the rat. J Physiol. 1992 Feb;447:191–213. doi: 10.1113/jphysiol.1992.sp018998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Park Y., Taylor M. F. A novel mutation L1029H in sodium channel gene hscp associated with pyrethroid resistance for Heliothis virescens (Lepidoptera:Noctuidae). Insect Biochem Mol Biol. 1997 Jan;27(1):9–13. doi: 10.1016/s0965-1748(96)00077-x. [DOI] [PubMed] [Google Scholar]
  31. Pittendrigh B., Reenan R., ffrench-Constant R. H., Ganetzky B. Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol Gen Genet. 1997 Nov;256(6):602–610. doi: 10.1007/s004380050608. [DOI] [PubMed] [Google Scholar]
  32. Ptácek L. J., George A. L., Jr, Griggs R. C., Tawil R., Kallen R. G., Barchi R. L., Robertson M., Leppert M. F. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell. 1991 Nov 29;67(5):1021–1027. doi: 10.1016/0092-8674(91)90374-8. [DOI] [PubMed] [Google Scholar]
  33. Raymond M., Fournier D., Bride J. M., Cuany A., Berge J., Magnin M., Pasteur N. Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: insensitive acetylcholinesterase and detoxifying oxidases. J Econ Entomol. 1986 Dec;79(6):1452–1458. doi: 10.1093/jee/79.6.1452. [DOI] [PubMed] [Google Scholar]
  34. Rojas C. V., Wang J. Z., Schwartz L. S., Hoffman E. P., Powell B. R., Brown R. H., Jr A Met-to-Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis. Nature. 1991 Dec 5;354(6352):387–389. doi: 10.1038/354387a0. [DOI] [PubMed] [Google Scholar]
  35. Severson D. W., Anthony N. M., Andreev O., ffrench-Constant R. H. Molecular mapping of insecticide resistance genes in the yellow fever mosquito (Aedes aegypti). J Hered. 1997 Nov-Dec;88(6):520–524. doi: 10.1093/oxfordjournals.jhered.a023148. [DOI] [PubMed] [Google Scholar]
  36. Smith T. J., Lee S. H., Ingles P. J., Knipple D. C., Soderlund D. M. The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. Insect Biochem Mol Biol. 1997 Oct;27(10):807–812. doi: 10.1016/s0965-1748(97)00065-9. [DOI] [PubMed] [Google Scholar]
  37. Soderlund D. M., Bloomquist J. R. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol. 1989;34:77–96. doi: 10.1146/annurev.en.34.010189.000453. [DOI] [PubMed] [Google Scholar]
  38. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  39. Thompson M., Steichen J. C., ffrench-Constant R. H. Conservation of cyclodiene insecticide resistance-associated mutations in insects. Insect Mol Biol. 1993;2(3):149–154. doi: 10.1111/j.1365-2583.1993.tb00134.x. [DOI] [PubMed] [Google Scholar]
  40. Vais H., Williamson M. S., Hick C. A., Eldursi N., Devonshire A. L., Usherwood P. N. Functional analysis of a rat sodium channel carrying a mutation for insect knock-down resistance (kdr) to pyrethroids. FEBS Lett. 1997 Aug 18;413(2):327–332. doi: 10.1016/s0014-5793(97)00931-9. [DOI] [PubMed] [Google Scholar]
  41. Vaughan A., Chadee D. D., French-Constant R. Biochemical monitoring of organophosphorus and carbamate insecticide resistance in Aedes aegypti mosquitoes from Trinidad. Med Vet Entomol. 1998 Jul;12(3):318–321. doi: 10.1046/j.1365-2915.1998.00111.x. [DOI] [PubMed] [Google Scholar]
  42. Vaughan A., Rocheleau T., ffrench-Constant R. Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Exp Parasitol. 1997 Nov;87(3):237–244. doi: 10.1006/expr.1997.4244. [DOI] [PubMed] [Google Scholar]
  43. Wang Q., Shen J., Li Z., Timothy K., Vincent G. M., Priori S. G., Schwartz P. J., Keating M. T. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet. 1995 Sep;4(9):1603–1607. doi: 10.1093/hmg/4.9.1603. [DOI] [PubMed] [Google Scholar]
  44. Williamson M. S., Denholm I., Bell C. A., Devonshire A. L. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol Gen Genet. 1993 Jul;240(1):17–22. doi: 10.1007/BF00276878. [DOI] [PubMed] [Google Scholar]
  45. Williamson M. S., Martinez-Torres D., Hick C. A., Devonshire A. L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996 Aug 27;252(1-2):51–60. doi: 10.1007/BF02173204. [DOI] [PubMed] [Google Scholar]
  46. Wilson T. G. Drosophila melanogaster (Diptera: Drosophilidae): a model insect for insecticide resistance studies. J Econ Entomol. 1988 Feb;81(1):22–27. doi: 10.1093/jee/81.1.22. [DOI] [PubMed] [Google Scholar]
  47. Yang N., Ji S., Zhou M., Ptácek L. J., Barchi R. L., Horn R., George A. L., Jr Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12785–12789. doi: 10.1073/pnas.91.26.12785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang H. G., Lee H. J., Rocheleau T., ffrench-Constant R. H., Jackson M. B. Subunit composition determines picrotoxin and bicuculline sensitivity of Drosophila gamma-aminobutyric acid receptors. Mol Pharmacol. 1995 Nov;48(5):835–840. [PubMed] [Google Scholar]
  49. Zhang H. G., ffrench-Constant R. H., Jackson M. B. A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J Physiol. 1994 Aug 15;479(Pt 1):65–75. doi: 10.1113/jphysiol.1994.sp020278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. ffrench-Constant R. H., Steichen J. C., Rocheleau T. A., Aronstein K., Roush R. T. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1957–1961. doi: 10.1073/pnas.90.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES