Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Oct 29;353(1376):1695–1699. doi: 10.1098/rstb.1998.0320

The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance.

J Hemingway 1, N Hawkes 1, L Prapanthadara 1, K G Jayawardenal 1, H Ranson 1
PMCID: PMC1692393  PMID: 10021769

Abstract

The primary routes of insecticide resistance in all insects are alterations in the insecticide target sites or changes in the rate at which the insecticide is detoxified. Three enzyme systems, glutathione S-transferases, esterases and monooxygenases, are involved in the detoxification of the four major insecticide classes. These enzymes act by rapidly metabolizing the insecticide to non-toxic products, or by rapidly binding and very slowly turning over the insecticide (sequestration). In Culex mosquitoes, the most common organophosphate insecticide resistance mechanism is caused by co-amplification of two esterases. The amplified esterases are differentially regulated, with three times more Est beta 2(1) being produced than Est alpha 2(1). Cis-acting regulatory sequences associated with these esterases are under investigation. All the amplified esterases in different Culex species act through sequestration. The rates at which they bind with insecticides are more rapid than those for their non-amplified counterparts in the insecticide-susceptible insects. In contrast, esterase-based organophosphate resistance in Anopheles is invariably based on changes in substrate specificities and increased turnover rates of a small subset of insecticides. The up-regulation of both glutathione S-transferases and monooxygenases in resistant mosquitoes is due to the effects of a single major gene in each case. The products of these major genes up-regulate a broad range of enzymes. The diversity of glutathione S-transferases produced by Anopheles mosquitoes is increased by the splicing of different 5' ends of genes, with a single 3' end, within one class of this enzyme family. The trans-acting regulatory factors responsible for the up-regulation of both the monooxygenase and glutathione S-transferases still need to be identified, but the recent development of molecular tools for positional cloning in Anopheles gambiae now makes this possible.

Full Text

The Full Text of this article is available as a PDF (111.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisset J. A., Rodriguez M. M., Hemingway J., Diaz C., Small G. J., Ortiz E. Malathion and pyrethroid resistance in Culex quinquefasciatus from Cuba: efficacy of pirimiphos-methyl in the presence of at least three resistance mechanisms. Med Vet Entomol. 1991 Apr;5(2):223–228. doi: 10.1111/j.1365-2915.1991.tb00544.x. [DOI] [PubMed] [Google Scholar]
  2. Brogdon W. G., McAllister J. C., Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc. 1997 Sep;13(3):233–237. [PubMed] [Google Scholar]
  3. DAVIDSON G. Insecticide resistance in Anopheles gambiae Giles: a case of simple mendelian inheritance. Nature. 1956 Oct 20;178(4538):863–864. doi: 10.1038/178863a0. [DOI] [PubMed] [Google Scholar]
  4. Gullemaud T., Makate N., Raymond M., Hirst B., Callaghan A. Esterase gene amplification in Culex pipiens. Insect Mol Biol. 1997 Nov;6(4):319–327. [PubMed] [Google Scholar]
  5. Hemingway J., Karunaratne S. H. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 1998 Jan;12(1):1–12. doi: 10.1046/j.1365-2915.1998.00082.x. [DOI] [PubMed] [Google Scholar]
  6. Hemingway J. The genetics of malathion resistance in Anopheles stephensi from Pakistan. Trans R Soc Trop Med Hyg. 1983;77(1):106–108. doi: 10.1016/0035-9203(83)90030-5. [DOI] [PubMed] [Google Scholar]
  7. Karunaratne S. H., Jayawardena K. G., Hemingway J., Ketterman A. J. Characterization of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefasciatus. Biochem J. 1993 Sep 1;294(Pt 2):575–579. doi: 10.1042/bj2940575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karunaratne S. H., Vaughan A., Paton M. G., Hemingway J. Amplification of a serine esterase gene is involved in insecticide resistance in Sri Lankan Culex tritaeniorhynchus. Insect Mol Biol. 1998 Nov;7(4):307–315. doi: 10.1046/j.1365-2583.1998.740307.x. [DOI] [PubMed] [Google Scholar]
  9. Lines J. D., Nassor N. S. DDT resistance in Anopheles gambiae declines with mosquito age. Med Vet Entomol. 1991 Jul;5(3):261–265. doi: 10.1111/j.1365-2915.1991.tb00550.x. [DOI] [PubMed] [Google Scholar]
  10. Martinez-Torres D., Chandre F., Williamson M. S., Darriet F., Bergé J. B., Devonshire A. L., Guillet P., Pasteur N., Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998 May;7(2):179–184. doi: 10.1046/j.1365-2583.1998.72062.x. [DOI] [PubMed] [Google Scholar]
  11. Mouches C., Pauplin Y., Agarwal M., Lemieux L., Herzog M., Abadon M., Beyssat-Arnaouty V., Hyrien O., de Saint Vincent B. R., Georghiou G. P. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2574–2578. doi: 10.1073/pnas.87.7.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nance E., Heyse D., Britton-Davidian J., Pasteur N. Chromosomal organization of the amplified esterase B1 gene in organophosphate-resistant Culex pipiens quinquefasciatus Say (Diptera, Culicidae). Genome. 1990 Feb;33(1):148–152. doi: 10.1139/g90-023. [DOI] [PubMed] [Google Scholar]
  13. Prapanthadara L. A., Koottathep S., Promtet N., Hemingway J., Ketterman A. J. Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (species B). Insect Biochem Mol Biol. 1996 Mar;26(3):277–285. doi: 10.1016/0965-1748(95)00090-9. [DOI] [PubMed] [Google Scholar]
  14. Ranson H., Cornel A. J., Fournier D., Vaughan A., Collins F. H., Hemingway J. Cloning and localization of a glutathione S-transferase class I gene from Anopheles gambiae. J Biol Chem. 1997 Feb 28;272(9):5464–5468. doi: 10.1074/jbc.272.9.5464. [DOI] [PubMed] [Google Scholar]
  15. Ranson H., Prapanthadara L. a., Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J. 1997 May 15;324(Pt 1):97–102. doi: 10.1042/bj3240097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
  17. Vaughan A., Hawkes N., Hemingway J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem J. 1997 Jul 15;325(Pt 2):359–365. doi: 10.1042/bj3250359. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES