Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Oct 29;353(1376):1701–1705. doi: 10.1098/rstb.1998.0321

Cytochrome P450 monooxygenases and insecticide resistance in insects.

J B Bergé 1, R Feyereisen 1, M Amichot 1
PMCID: PMC1692400  PMID: 10021770

Abstract

Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the sequencing of a cytochrome P450 candidate for resistance in resistant and susceptible flies. Several mutations leading to amino-acid substitutions have been detected in the P450 gene CYP6A2 of a resistant strain. The location of these mutations in a model of the 3D structure of the CYP6A2 protein suggested that some of them may be important for enzyme activity of this molecule. This has been verified by heterologous expression of wild-type and mutated cDNA in Escherichia coli. When other resistance mechanisms are considered, relatively few genetic mutations are involved in insecticide resistance, and this has led to an optimistic view of the management of resistance. Our observations compel us to survey in more detail the genetic diversity of cytochrome P450 genes and alleles involved in resistance.

Full Text

The Full Text of this article is available as a PDF (116.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bride J. M., Cuany A., Amichot M., Brun A., Babault M., Mouël T. L., De Sousa G., Rahmani R., Berge J. B. Cytochrome P-450 field insecticide tolerance and development of laboratory resistance in grape vine populations of Drosophila melanogaster (Diptera: Drosophilidae). J Econ Entomol. 1997 Dec;90(6):1514–1520. doi: 10.1093/jee/90.6.1514. [DOI] [PubMed] [Google Scholar]
  2. Brun A., Cuany A., Le Mouel T., Berge J., Amichot M. Inducibility of the Drosophila melanogaster cytochrome P450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem Mol Biol. 1996 Jul;26(7):697–703. doi: 10.1016/s0965-1748(96)00036-7. [DOI] [PubMed] [Google Scholar]
  3. Cariño F. A., Koener J. F., Plapp F. W., Jr, Feyereisen R. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol. 1994 Apr;24(4):411–418. doi: 10.1016/0965-1748(94)90034-5. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. B., Koener J. F., Feyereisen R. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly. Gene. 1994 Sep 2;146(2):267–272. doi: 10.1016/0378-1119(94)90304-2. [DOI] [PubMed] [Google Scholar]
  5. Coon M. J., Vaz A. D., Bestervelt L. L. Cytochrome P450 2: peroxidative reactions of diversozymes. FASEB J. 1996 Mar;10(4):428–434. doi: 10.1096/fasebj.10.4.8647341. [DOI] [PubMed] [Google Scholar]
  6. Dunkov B. C., Guzov V. M., Mocelin G., Shotkoski F., Brun A., Amichot M., Ffrench-Constant R. H., Feyereisen R. The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol. 1997 Nov;16(11):1345–1356. doi: 10.1089/dna.1997.16.1345. [DOI] [PubMed] [Google Scholar]
  7. Dyte C. E. Resistance to synthetic juvenile hormone in a strain of the flour beetle, Tribolium castaneum. Nature. 1972 Jul 7;238(5358):48–49. doi: 10.1038/238048a0. [DOI] [PubMed] [Google Scholar]
  8. Feyereisen R., Koener J. F., Farnsworth D. E., Nebert D. W. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1465–1469. doi: 10.1073/pnas.86.5.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank M. R., Fogleman J. C. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11998–12002. doi: 10.1073/pnas.89.24.11998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Houpt D. R., Pursey J. C., Morton R. A. Genes controlling malathion resistance in a laboratory-selected population of Drosophila melanogaster. Genome. 1988 Dec;30(6):844–853. doi: 10.1139/g88-136. [DOI] [PubMed] [Google Scholar]
  11. Liu N., Scott J. G. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem Genet. 1996 Apr;34(3-4):133–148. doi: 10.1007/BF02396246. [DOI] [PubMed] [Google Scholar]
  12. Liu N., Scott J. G. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Mol Biol. 1997 Feb;6(1):77–81. doi: 10.1046/j.1365-2583.1997.00160.x. [DOI] [PubMed] [Google Scholar]
  13. Maitra S., Dombrowski S. M., Waters L. C., Ganguly R. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene. 1996 Nov 21;180(1-2):165–171. doi: 10.1016/s0378-1119(96)00446-5. [DOI] [PubMed] [Google Scholar]
  14. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  15. Pittendrigh B., Aronstein K., Zinkovsky E., Andreev O., Campbell B., Daly J., Trowell S., Ffrench-Constant R. H. Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and -resistant strain. Insect Biochem Mol Biol. 1997 Jun;27(6):507–512. doi: 10.1016/s0965-1748(97)00025-8. [DOI] [PubMed] [Google Scholar]
  16. Rose R. L., Goh D., Thompson D. M., Verma K. D., Heckel D. G., Gahan L. J., Roe R. M., Hodgson E. Cytochrome P450 (CYP)9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem Mol Biol. 1997 Jun;27(6):605–615. doi: 10.1016/s0965-1748(97)00036-2. [DOI] [PubMed] [Google Scholar]
  17. Scott J. G., Sridhar P., Liu N. Adult specific expression and induction of cytochrome P450lpr in house flies. Arch Insect Biochem Physiol. 1996;31(3):313–323. doi: 10.1002/(SICI)1520-6327(1996)31:3<313::AID-ARCH6>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  18. Taylor M., Feyereisen R. Molecular biology and evolution of resistance of toxicants. Mol Biol Evol. 1996 Jul;13(6):719–734. doi: 10.1093/oxfordjournals.molbev.a025633. [DOI] [PubMed] [Google Scholar]
  19. Wang X. P., Hobbs A. A. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem Mol Biol. 1995 Oct;25(9):1001–1009. doi: 10.1016/0965-1748(95)00033-r. [DOI] [PubMed] [Google Scholar]
  20. Waters L. C., Zelhof A. C., Shaw B. J., Ch'ang L. Y. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4855–4859. doi: 10.1073/pnas.89.11.4855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhang M., Scott J. G. Purification and characterization of cytochrome b5 reductase from the house fly, Musca domestica. Comp Biochem Physiol B Biochem Mol Biol. 1996 Jan;113(1):175–183. doi: 10.1016/0305-0491(95)02028-4. [DOI] [PubMed] [Google Scholar]
  22. de Sousa G., Cuany A., Brun A., Amichot M., Rahmani R., Bergé J. B. A microfluorometric method for measuring ethoxycoumarin-O-deethylase activity on individual Drosophila melanogaster abdomens: interest for screening resistance in insect populations. Anal Biochem. 1995 Jul 20;229(1):86–91. doi: 10.1006/abio.1995.1382. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES