Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jan 29;354(1379):111–119. doi: 10.1098/rstb.1999.0364

How microbial ancient DNA, found in association with human remains, can be interpreted.

F Rollo 1, I Marota 1
PMCID: PMC1692447  PMID: 10091251

Abstract

The analysis of the DNA of ancient micro-organisms in archaeological and palaeontological human remains can contribute to the understanding of issues as different as the spreading of a new disease, a mummification process or the effect of diets on historical human populations. The quest for this type of DNA, however, can represent a particularly demanding task. This is mainly due to the abundance and diffusion of bacteria, fungi, yeasts, algae and protozoans in the most diverse environments of the present-day biosphere and the resulting difficulty in distinguishing between ancient and modern DNA. Nevertheless, at least under some special circumstances, by using rigorous protocols, which include an archaeometric survey of the specimens and evaluation of the palaeoecological consistency of the results of DNA sequence analysis, glimpses of the composition of the original microbial flora (e.g. colonic flora) can be caught in ancient human remains. Potentials and pitfalls of this research field are illustrated by the results of research works performed on prehistoric, pre-Columbian and Renaissance human mummies.

Full Text

The Full Text of this article is available as a PDF (210.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Clementi M., Menzo S., Bagnarelli P., Manzin A., Valenza A., Varaldo P. E. Quantitative PCR and RT-PCR in virology. PCR Methods Appl. 1993 Feb;2(3):191–196. doi: 10.1101/gr.2.3.191. [DOI] [PubMed] [Google Scholar]
  3. Förster E. An improved general method to generate internal standards for competitive PCR. Biotechniques. 1994 Jan;16(1):18–20. [PubMed] [Google Scholar]
  4. Hagelberg E., Thomas M. G., Cook C. E., Jr, Sher A. V., Baryshnikov G. F., Lister A. M. DNA from ancient mammoth bones. Nature. 1994 Aug 4;370(6488):333–334. doi: 10.1038/370333b0. [DOI] [PubMed] [Google Scholar]
  5. Handt O., Krings M., Ward R. H., Päbo S. The retrieval of ancient human DNA sequences. Am J Hum Genet. 1996 Aug;59(2):368–376. [PMC free article] [PubMed] [Google Scholar]
  6. Handt O., Richards M., Trommsdorff M., Kilger C., Simanainen J., Georgiev O., Bauer K., Stone A., Hedges R., Schaffner W. Molecular genetic analyses of the Tyrolean Ice Man. Science. 1994 Jun 17;264(5166):1775–1778. doi: 10.1126/science.8209259. [DOI] [PubMed] [Google Scholar]
  7. Höss M., Päbo S., Vereshchagin N. K. Mammoth DNA sequences. Nature. 1994 Aug 4;370(6488):333–333. doi: 10.1038/370333a0. [DOI] [PubMed] [Google Scholar]
  8. Marcotte H., Lavoie M. C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998 Mar;62(1):71–109. doi: 10.1128/mmbr.62.1.71-109.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Poinar H. N., Höss M., Bada J. L., Päbo S. Amino acid racemization and the preservation of ancient DNA. Science. 1996 May 10;272(5263):864–866. doi: 10.1126/science.272.5263.864. [DOI] [PubMed] [Google Scholar]
  10. Rafi A., Spigelman M., Stanford J., Lemma E., Donoghue H., Zias J. Mycobacterium leprae DNA from ancient bone detected by PCR. Lancet. 1994 May 28;343(8909):1360–1361. [PubMed] [Google Scholar]
  11. Relman D. A. The identification of uncultured microbial pathogens. J Infect Dis. 1993 Jul;168(1):1–8. doi: 10.1093/infdis/168.1.1. [DOI] [PubMed] [Google Scholar]
  12. Rollo F., Sassaroli S., Ubaldi M. Molecular phylogeny of the fungi of the Iceman's grass clothing. Curr Genet. 1995 Aug;28(3):289–297. doi: 10.1007/BF00309789. [DOI] [PubMed] [Google Scholar]
  13. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  14. Salo W. L., Aufderheide A. C., Buikstra J., Holcomb T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2091–2094. doi: 10.1073/pnas.91.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Setlow P. I will survive: protecting and repairing spore DNA. J Bacteriol. 1992 May;174(9):2737–2741. doi: 10.1128/jb.174.9.2737-2741.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suzuki M. T., Giovannoni S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996 Feb;62(2):625–630. doi: 10.1128/aem.62.2.625-630.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tajima F., Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol. 1984 Apr;1(3):269–285. doi: 10.1093/oxfordjournals.molbev.a040317. [DOI] [PubMed] [Google Scholar]
  18. Van de Peer Y., De Wachter R. TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci. 1993 Apr;9(2):177–182. doi: 10.1093/bioinformatics/9.2.177. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES