Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jan 29;354(1379):77–87. doi: 10.1098/rstb.1999.0361

Preservation of key biomolecules in the fossil record: current knowledge and future challenges.

J L Bada 1, X S Wang 1, H Hamilton 1
PMCID: PMC1692449  PMID: 10091249

Abstract

We have developed a model based on the analyses of modern and Pleistocene eggshells and mammalian bones which can be used to understand the preservation of amino acids and other important biomolecules such as DNA in fossil specimens. The model is based on the following series of diagenetic reactions and processes involving amino acids: the hydrolysis of proteins and the subsequent loss of hydrolysis products from the fossil matrix with increasing geologic age; the racemization of amino acids which produces totally racemized amino acids in 10(5)-10(6) years in most environments on the Earth; the introduction of contaminants into the fossil that lowers the enantiomeric (D:L) ratios produced via racemization; and the condensation reactions between amino acids, as well as other compounds with primary amino groups, and sugars which yield humic acid-like polymers. This model was used to evaluate whether useful amino acid and DNA sequence information is preserved in a variety of human, amber-entombed insect and dinosaur specimens. Most skeletal remains of evolutionary interest with respect to the origin of modern humans are unlikely to preserve useful biomolecular information although those from high latitude sites may be an exception. Amber-entombed insects contain well-preserved unracemized amino acids, apparently because of the anhydrous nature of the amber matrix, and thus may contain DNA fragments which have retained meaningful genetic information. Dinosaur specimens contain mainly exogenous amino acids, although traces of endogenous amino acids may be present in some cases. Future ancient biomolecule research which takes advantage of new methologies involving, for example, humic acid cleaving reagents and microchip-based DNA-protein detection and sequencing, along with investigations of very slow biomolecule diagenetic reactions such as the racemization of isoleucine at the beta-carbon, will lead to further enhancements of our understanding of biomolecule preservation in the fossil record.

Full Text

The Full Text of this article is available as a PDF (232.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin J. J., Ross A. J., Smith A. B., Fortey R. A., Thomas R. H. Problems of reproducibility--does geologically ancient DNA survive in amber-preserved insects? Proc Biol Sci. 1997 Apr 22;264(1381):467–474. doi: 10.1098/rspb.1997.0067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bada J. L., McDonald G. D. Amino acid racemization on Mars: implications for the preservation of biomolecules from an extinct martian biota. Icarus. 1995;114:139–143. doi: 10.1006/icar.1995.1049. [DOI] [PubMed] [Google Scholar]
  3. Bada J. L., Wang X. S., Poinar H. N., Paabo S., Poinar G. O. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim Cosmochim Acta. 1994;58(14):3131–3135. doi: 10.1016/0016-7037(94)90185-6. [DOI] [PubMed] [Google Scholar]
  4. Brooks A. S., Hare P. E., Kokis J. E., Miller G. H., Ernst R. D., Wendorf F. Dating pleistocene archeological sites by protein diagenesis in ostrich eggshell. Science. 1990 Apr 6;248(4951):60–64. doi: 10.1126/science.248.4951.60. [DOI] [PubMed] [Google Scholar]
  5. Cano R. J., Poinar H. N., Pieniazek N. J., Acra A., Poinar G. O., Jr Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature. 1993 Jun 10;363(6429):536–538. doi: 10.1038/363536a0. [DOI] [PubMed] [Google Scholar]
  6. Cooper A., Poinar H. N., Päbo S., Radovcić J., Debénath A., Caparros M., Barroso-Ruiz C., Bertranpetit J., Nielsen-Marsh C., Hedges R. E. Neandertal genetics. Science. 1997 Aug 22;277(5329):1021–1024. doi: 10.1126/science.277.5329.1021b. [DOI] [PubMed] [Google Scholar]
  7. DeSalle R., Gatesy J., Wheeler W., Grimaldi D. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science. 1992 Sep 25;257(5078):1933–1936. doi: 10.1126/science.1411508. [DOI] [PubMed] [Google Scholar]
  8. Handt O., Richards M., Trommsdorff M., Kilger C., Simanainen J., Georgiev O., Bauer K., Stone A., Hedges R., Schaffner W. Molecular genetic analyses of the Tyrolean Ice Man. Science. 1994 Jun 17;264(5166):1775–1778. doi: 10.1126/science.8209259. [DOI] [PubMed] [Google Scholar]
  9. Kopp M. U., Mello A. J., Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998 May 15;280(5366):1046–1048. doi: 10.1126/science.280.5366.1046. [DOI] [PubMed] [Google Scholar]
  10. Krings M., Stone A., Schmitz R. W., Krainitzki H., Stoneking M., Päbo S. Neandertal DNA sequences and the origin of modern humans. Cell. 1997 Jul 11;90(1):19–30. doi: 10.1016/s0092-8674(00)80310-4. [DOI] [PubMed] [Google Scholar]
  11. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
  12. Lindahl T. The Croonian Lecture, 1996: endogenous damage to DNA. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1529–1538. doi: 10.1098/rstb.1996.0139. [DOI] [PubMed] [Google Scholar]
  13. Miller G. H., Beaumont P. B., Jull A. J., Johnson B. Pleistocene geochronology and palaeothermometry from protein diagenesis in ostrich eggshells: implications for the evolution of modern humans. Philos Trans R Soc Lond B Biol Sci. 1992 Aug 29;337(1280):149–157. doi: 10.1098/rstb.1992.0092. [DOI] [PubMed] [Google Scholar]
  14. Monnier V. M., Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981 Jan 30;211(4481):491–493. doi: 10.1126/science.6779377. [DOI] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1998.0342. [DOI] [PMC free article] [Google Scholar]
  16. Poinar H. N., Hofreiter M., Spaulding W. G., Martin P. S., Stankiewicz B. A., Bland H., Evershed R. P., Possnert G., Päbo S. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science. 1998 Jul 17;281(5375):402–406. doi: 10.1126/science.281.5375.402. [DOI] [PubMed] [Google Scholar]
  17. Poinar H. N., Höss M., Bada J. L., Päbo S. Amino acid racemization and the preservation of ancient DNA. Science. 1996 May 10;272(5263):864–866. doi: 10.1126/science.272.5263.864. [DOI] [PubMed] [Google Scholar]
  18. Päbo S., Wilson A. C. Miocene DNA sequences - a dream come true? Curr Biol. 1991 Feb;1(1):45–46. doi: 10.1016/0960-9822(91)90125-g. [DOI] [PubMed] [Google Scholar]
  19. Schweitzer M. H., Marshall M., Carron K., Bohle D. S., Busse S. C., Arnold E. V., Barnard D., Horner J. R., Starkey J. R. Heme compounds in dinosaur trabecular bone. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6291–6296. doi: 10.1073/pnas.94.12.6291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor R. E., Kirner D. L., Southon J. R., Chatters J. C. Radiocarbon dates of Kennewick Man. Science. 1998 May 22;280(5367):1171–1172. doi: 10.1126/science.280.5367.1171c. [DOI] [PubMed] [Google Scholar]
  21. Vasan S., Zhang X., Zhang X., Kapurniotu A., Bernhagen J., Teichberg S., Basgen J., Wagle D., Shih D., Terlecky I. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996 Jul 18;382(6588):275–278. doi: 10.1038/382275a0. [DOI] [PubMed] [Google Scholar]
  22. Woodward S. R., Weyand N. J., Bunnell M. DNA sequence from Cretaceous period bone fragments. Science. 1994 Nov 18;266(5188):1229–1232. doi: 10.1126/science.7973705. [DOI] [PubMed] [Google Scholar]
  23. Woolley A. T., Hadley D., Landre P., deMello A. J., Mathies R. A., Northrup M. A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem. 1996 Dec 1;68(23):4081–4086. doi: 10.1021/ac960718q. [DOI] [PubMed] [Google Scholar]
  24. Woolley A. T., Sensabaugh G. F., Mathies R. A. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Anal Chem. 1997 Jun 1;69(11):2181–2186. doi: 10.1021/ac961237+. [DOI] [PubMed] [Google Scholar]
  25. Zhao M., Bada J. L. Determination of alpha-dialkylamino acids and their enantiomers in geological samples by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. J Chromatogr A. 1995;690:55–63. doi: 10.1016/0021-9673(94)00927-2. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES