Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Feb 28;354(1381):299–306. doi: 10.1098/rstb.1999.0381

Genetic evidence for an equilibrium between docked and undocked vesicles.

J Li 1, T L Schwarz 1
PMCID: PMC1692483  PMID: 10212478

Abstract

By using the shibire mutation to block endocytosis in a temperature-dependent fashion, we have manipulated the number of synaptic vesicles in a nerve terminal and have observed a remarkable proportionality of the number of quanta released to the size of the total vesicle pool. In the experiments described below we determine that approximately 0.3% of the vesicle pool is released per stimulus. The data suggest that the pool of readily releasable docked vesicles does not represent the saturation of a limiting number of release sites, but instead represents a subset of vesicles that is in equilibrium with the larger pool of vesicles. Before presenting this data and the significance of the finding for the regulation of neurotransmission, we will briefly review the use of Drosophila genetics as a tool for dissecting synaptic transmission.

Full Text

The Full Text of this article is available as a PDF (158.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agoston D. V., Kosh J. W., Lisziewicz J., Whittaker V. P. Separation of recycling and reserve synaptic vesicles from cholinergic nerve terminals of the myenteric plexus of guinea pig ileum. J Neurochem. 1985 Jan;44(1):299–305. doi: 10.1111/j.1471-4159.1985.tb07144.x. [DOI] [PubMed] [Google Scholar]
  2. Broadie K., Bellen H. J., DiAntonio A., Littleton J. T., Schwarz T. L. Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10727–10731. doi: 10.1073/pnas.91.22.10727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Broadie K., Prokop A., Bellen H. J., O'Kane C. J., Schulze K. L., Sweeney S. T. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 1995 Sep;15(3):663–673. doi: 10.1016/0896-6273(95)90154-x. [DOI] [PubMed] [Google Scholar]
  4. Burgess R. W., Deitcher D. L., Schwarz T. L. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J Cell Biol. 1997 Aug 25;138(4):861–875. doi: 10.1083/jcb.138.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deitcher D. L., Ueda A., Stewart B. A., Burgess R. W., Kidokoro Y., Schwarz T. L. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci. 1998 Mar 15;18(6):2028–2039. doi: 10.1523/JNEUROSCI.18-06-02028.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DiAntonio A., Parfitt K. D., Schwarz T. L. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell. 1993 Jul 2;73(7):1281–1290. doi: 10.1016/0092-8674(93)90356-u. [DOI] [PubMed] [Google Scholar]
  7. DiAntonio A., Schwarz T. L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron. 1994 Apr;12(4):909–920. doi: 10.1016/0896-6273(94)90342-5. [DOI] [PubMed] [Google Scholar]
  8. Grigliatti T. A., Hall L., Rosenbluth R., Suzuki D. T. Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol Gen Genet. 1973 Jan 24;120(2):107–114. doi: 10.1007/BF00267238. [DOI] [PubMed] [Google Scholar]
  9. Ikeda K., Ozawa S., Hagiwara S. Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster. Nature. 1976 Feb 12;259(5543):489–491. doi: 10.1038/259489a0. [DOI] [PubMed] [Google Scholar]
  10. Koenig J. H., Ikeda K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci. 1989 Nov;9(11):3844–3860. doi: 10.1523/JNEUROSCI.09-11-03844.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koenig J. H., Kosaka T., Ikeda K. The relationship between the number of synaptic vesicles and the amount of transmitter released. J Neurosci. 1989 Jun;9(6):1937–1942. doi: 10.1523/JNEUROSCI.09-06-01937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koenig J. H., Saito K., Ikeda K. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. J Cell Biol. 1983 Jun;96(6):1517–1522. doi: 10.1083/jcb.96.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuromi H., Kidokoro Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron. 1998 May;20(5):917–925. doi: 10.1016/s0896-6273(00)80473-0. [DOI] [PubMed] [Google Scholar]
  14. MARTIN A. R. A further study of the statistical composition on the end-plate potential. J Physiol. 1955 Oct 28;130(1):114–122. doi: 10.1113/jphysiol.1955.sp005397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parfitt K., Reist N., Li J., Burgess R., Deitcher D., DiAntonio A., Schwarz T. L. Drosophila genetics and the functions of synaptic proteins. Cold Spring Harb Symp Quant Biol. 1995;60:371–377. doi: 10.1101/sqb.1995.060.01.041. [DOI] [PubMed] [Google Scholar]
  16. Pieribone V. A., Shupliakov O., Brodin L., Hilfiker-Rothenfluh S., Czernik A. J., Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995 Jun 8;375(6531):493–497. doi: 10.1038/375493a0. [DOI] [PubMed] [Google Scholar]
  17. Poodry C. A., Edgar L. Reversible alteration in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. J Cell Biol. 1979 Jun;81(3):520–527. doi: 10.1083/jcb.81.3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reist N. E., Buchanan J., Li J., DiAntonio A., Buxton E. M., Schwarz T. L. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J Neurosci. 1998 Oct 1;18(19):7662–7673. doi: 10.1523/JNEUROSCI.18-19-07662.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ryan T. A., Reuter H., Smith S. J. Optical detection of a quantal presynaptic membrane turnover. Nature. 1997 Jul 31;388(6641):478–482. doi: 10.1038/41335. [DOI] [PubMed] [Google Scholar]
  20. Schulze K. L., Bellen H. J. Drosophila syntaxin is required for cell viability and may function in membrane formation and stabilization. Genetics. 1996 Dec;144(4):1713–1724. doi: 10.1093/genetics/144.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schulze K. L., Broadie K., Perin M. S., Bellen H. J. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell. 1995 Jan 27;80(2):311–320. doi: 10.1016/0092-8674(95)90414-x. [DOI] [PubMed] [Google Scholar]
  22. Stewart B. A., Atwood H. L., Renger J. J., Wang J., Wu C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A. 1994 Aug;175(2):179–191. doi: 10.1007/BF00215114. [DOI] [PubMed] [Google Scholar]
  23. Söllner T. H., Rothman J. E. Molecular machinery mediating vesicle budding, docking and fusion. Cell Struct Funct. 1996 Oct;21(5):407–412. doi: 10.1247/csf.21.407. [DOI] [PubMed] [Google Scholar]
  24. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  25. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  26. Zimmermann H., Denston C. R. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience. 1977;2(5):715–730. doi: 10.1016/0306-4522(77)90025-2. [DOI] [PubMed] [Google Scholar]
  27. Zimmermann H., Whittaker V. P. Morphological and biochemical heterogeneity of cholinergic synaptic vesicles. Nature. 1977 Jun 16;267(5612):633–635. doi: 10.1038/267633a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES