Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Feb 28;354(1381):307–318. doi: 10.1098/rstb.1999.0382

Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release.

M Oheim 1, D Loerke 1, R H Chow 1, W Stühmer 1
PMCID: PMC1692489  PMID: 10212479

Abstract

Evanescent-wave excitation was used to visualize individual fluorescently labelled vesicles in an optical slice near the plasma membrane of bovine adrenal chromaffin cells. A standard upright microscope was modified to accommodate the optics used for directing a laser beam under a supracritical angle on to the glass-water interface on top of which the cells are grown. Whereas epi-illumination images appeared blurred and structureless, evanescent-wave excitation highlighted acridine orange-labelled vesicles as individual pinpoints. Three-dimensional (3D) trajectories of individual vesicles were obtained from time-resolved image stacks and used to characterize vesicles in terms of their average fluorescence F and mobility, expressed here as the 3D diffusion coefficient D(3). Based on the single-vesicle analysis, two groups of vesicles were identified. Transitions between these states were studied before and after stimulation of exocytosis by repetitive or maintained membrane depolarizations by elevated extracellular [K+]. Findings were interpreted as sequential transitions between the previously characterized pools of vesicles preceding the fusion step. The observed approach of vesicles to their docking sites was not explained in terms of free diffusion: most vesicles moved unidirectionally as if directed to their binding sites at the plasma membrane. Vesicle mobility at the membrane was low, such that the sites of docking and fusion were in close vicinity. Both the rim region and confined areas in the centre of the footprint region were the site of intense vesicle trafficking.

Full Text

The Full Text of this article is available as a PDF (305.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agard D. A., Hiraoka Y., Shaw P., Sedat J. W. Fluorescence microscopy in three dimensions. Methods Cell Biol. 1989;30:353–377. doi: 10.1016/s0091-679x(08)60986-3. [DOI] [PubMed] [Google Scholar]
  2. Albillos A., Dernick G., Horstmann H., Almers W., Alvarez de Toledo G., Lindau M. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature. 1997 Oct 2;389(6650):509–512. doi: 10.1038/39081. [DOI] [PubMed] [Google Scholar]
  3. Almers W. Exocytosis. Annu Rev Physiol. 1990;52:607–624. doi: 10.1146/annurev.ph.52.030190.003135. [DOI] [PubMed] [Google Scholar]
  4. Angleson J. K., Betz W. J. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci. 1997 Jul;20(7):281–287. doi: 10.1016/s0166-2236(97)01083-7. [DOI] [PubMed] [Google Scholar]
  5. Augustine G. J., Neher E. Calcium requirements for secretion in bovine chromaffin cells. J Physiol. 1992 May;450:247–271. doi: 10.1113/jphysiol.1992.sp019126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol. 1981 Apr;89(1):141–145. doi: 10.1083/jcb.89.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Betz W. J., Angleson J. K. Cellular secretion. Now you see it, now you don't. Nature. 1997 Jul 31;388(6641):423–424. doi: 10.1038/41213. [DOI] [PubMed] [Google Scholar]
  8. Betz W. J., Bewick G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 1992 Jan 10;255(5041):200–203. doi: 10.1126/science.1553547. [DOI] [PubMed] [Google Scholar]
  9. Betz W. J. Depression of transmitter release at the neuromuscular junction of the frog. J Physiol. 1970 Mar;206(3):629–644. doi: 10.1113/jphysiol.1970.sp009034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Betz W. J., Mao F., Bewick G. S. Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci. 1992 Feb;12(2):363–375. doi: 10.1523/JNEUROSCI.12-02-00363.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Betz W. J., Mao F., Smith C. B. Imaging exocytosis and endocytosis. Curr Opin Neurobiol. 1996 Jun;6(3):365–371. doi: 10.1016/s0959-4388(96)80121-8. [DOI] [PubMed] [Google Scholar]
  12. Biggley W. H., Lloyd J. E., Seliger H. H. The spectral distribution of firefly light. II. J Gen Physiol. 1967 Jul;50(6):1681–1692. doi: 10.1085/jgp.50.6.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Burghardt T. P., Thompson N. L. Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection. Biophys J. 1984 Dec;46(6):729–737. doi: 10.1016/S0006-3495(84)84071-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Burke N. V., Han W., Li D., Takimoto K., Watkins S. C., Levitan E. S. Neuronal peptide release is limited by secretory granule mobility. Neuron. 1997 Nov;19(5):1095–1102. doi: 10.1016/s0896-6273(00)80400-6. [DOI] [PubMed] [Google Scholar]
  15. Burmeister J. S., Truskey G. A., Reichert W. M. Quantitative analysis of variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) of cell/substrate contacts. J Microsc. 1994 Jan;173(Pt 1):39–51. doi: 10.1111/j.1365-2818.1994.tb03426.x. [DOI] [PubMed] [Google Scholar]
  16. CURTIS A. S. THE MECHANISM OF ADHESION OF CELLS TO GLASS. A STUDY BY INTERFERENCE REFLECTION MICROSCOPY. J Cell Biol. 1964 Feb;20:199–215. doi: 10.1083/jcb.20.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chiu M. H., Lee J. Y., Su D. C. Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry. Appl Opt. 1997 May 1;36(13):2936–2939. doi: 10.1364/ao.36.002936. [DOI] [PubMed] [Google Scholar]
  18. Chow R. H., von Rüden L., Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992 Mar 5;356(6364):60–63. doi: 10.1038/356060a0. [DOI] [PubMed] [Google Scholar]
  19. Conibear P. B., Bagshaw C. R. Measurement of nucleotide exchange kinetics with isolated synthetic myosin filaments using flash photolysis. FEBS Lett. 1996 Feb 12;380(1-2):13–16. doi: 10.1016/0014-5793(95)01538-8. [DOI] [PubMed] [Google Scholar]
  20. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science. 1990 Apr 6;248(4951):73–76. doi: 10.1126/science.2321027. [DOI] [PubMed] [Google Scholar]
  22. Denk W., Yuste R., Svoboda K., Tank D. W. Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol. 1996 Jun;6(3):372–378. doi: 10.1016/s0959-4388(96)80122-x. [DOI] [PubMed] [Google Scholar]
  23. Elmqvist D., Quastel D. M. A quantitative study of end-plate potentials in isolated human muscle. J Physiol. 1965 Jun;178(3):505–529. doi: 10.1113/jphysiol.1965.sp007639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Farinas J., Simanek V., Verkman A. S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys J. 1995 Apr;68(4):1613–1620. doi: 10.1016/S0006-3495(95)80335-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gillis K. D., Chow R. H. Kinetics of exocytosis in adrenal chromaffin cells. Semin Cell Dev Biol. 1997 Apr;8(2):133–140. doi: 10.1006/scdb.1996.0132. [DOI] [PubMed] [Google Scholar]
  26. Gillis K. D., Misler S. Enhancers of cytosolic cAMP augment depolarization-induced exocytosis from pancreatic B-cells: evidence for effects distal to Ca2+ entry. Pflugers Arch. 1993 Jul;424(2):195–197. doi: 10.1007/BF00374612. [DOI] [PubMed] [Google Scholar]
  27. Gillis K. D., Mossner R., Neher E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron. 1996 Jun;16(6):1209–1220. doi: 10.1016/s0896-6273(00)80147-6. [DOI] [PubMed] [Google Scholar]
  28. Gingell D., Heavens O. S., Mellor J. S. General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography. J Cell Sci. 1987 Jun;87(Pt 5):677–693. doi: 10.1242/jcs.87.5.677. [DOI] [PubMed] [Google Scholar]
  29. Gingell D., Todd I., Bailey J. Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers. J Cell Biol. 1985 Apr;100(4):1334–1338. doi: 10.1083/jcb.100.4.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gingell D., Todd I. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys J. 1979 Jun;26(3):507–526. doi: 10.1016/S0006-3495(79)85268-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  32. Hiraoka Y., Sedat J. W., Agard D. A. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys J. 1990 Feb;57(2):325–333. doi: 10.1016/S0006-3495(90)82534-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Horrigan F. T., Bookman R. J. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron. 1994 Nov;13(5):1119–1129. doi: 10.1016/0896-6273(94)90050-7. [DOI] [PubMed] [Google Scholar]
  34. Kaether C., Gerdes H. H. Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Lett. 1995 Aug 7;369(2-3):267–271. doi: 10.1016/0014-5793(95)00765-2. [DOI] [PubMed] [Google Scholar]
  35. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lang T., Wacker I., Steyer J., Kaether C., Wunderlich I., Soldati T., Gerdes H. H., Almers W. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron. 1997 Jun;18(6):857–863. doi: 10.1016/s0896-6273(00)80325-6. [DOI] [PubMed] [Google Scholar]
  37. Lanni F., Waggoner A. S., Taylor D. L. Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy. J Cell Biol. 1985 Apr;100(4):1091–1102. doi: 10.1083/jcb.100.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lipp P., Niggli E. Ratiometric confocal Ca(2+)-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium. 1993 May;14(5):359–372. doi: 10.1016/0143-4160(93)90040-d. [DOI] [PubMed] [Google Scholar]
  39. Maiti S., Shear J. B., Williams R. M., Zipfel W. R., Webb W. W. Measuring serotonin distribution in live cells with three-photon excitation. Science. 1997 Jan 24;275(5299):530–532. doi: 10.1126/science.275.5299.530. [DOI] [PubMed] [Google Scholar]
  40. Miesenböck G., De Angelis D. A., Rothman J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998 Jul 9;394(6689):192–195. doi: 10.1038/28190. [DOI] [PubMed] [Google Scholar]
  41. Miesenböck G., Rothman J. E. Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3402–3407. doi: 10.1073/pnas.94.7.3402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron. 1998 Mar;20(3):389–399. doi: 10.1016/s0896-6273(00)80983-6. [DOI] [PubMed] [Google Scholar]
  44. Oheim M., Loerke D., Stühmer W., Chow R. H. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J. 1999;28(2):91–101. doi: 10.1007/s002490050188. [DOI] [PubMed] [Google Scholar]
  45. Oheim M., Loerke D., Stühmer W., Chow R. H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J. 1998;27(2):83–98. doi: 10.1007/s002490050114. [DOI] [PubMed] [Google Scholar]
  46. Reichert W. M., Truskey G. A. Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence. J Cell Sci. 1990 Jun;96(Pt 2):219–230. doi: 10.1242/jcs.96.2.219. [DOI] [PubMed] [Google Scholar]
  47. Rojas E., Ceña V., Stutzin A., Forsberg E., Pollard H. B. Characteristics of receptor-operated and membrane potential-dependent ATP secretion from adrenal medullary chromaffin cells. Ann N Y Acad Sci. 1990;603:311–323. doi: 10.1111/j.1749-6632.1990.tb37682.x. [DOI] [PubMed] [Google Scholar]
  48. Rojas E., Forsberg E., Pollard H. B. Optical detection of calcium dependent ATP release from stimulated medullary chromaffin cells. Adv Exp Med Biol. 1986;211:7–29. doi: 10.1007/978-1-4684-5314-0_2. [DOI] [PubMed] [Google Scholar]
  49. Rosenmund C., Stevens C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron. 1996 Jun;16(6):1197–1207. doi: 10.1016/s0896-6273(00)80146-4. [DOI] [PubMed] [Google Scholar]
  50. Ryan T. A., Reuter H., Smith S. J. Optical detection of a quantal presynaptic membrane turnover. Nature. 1997 Jul 31;388(6641):478–482. doi: 10.1038/41335. [DOI] [PubMed] [Google Scholar]
  51. Saxton M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J. 1994 Feb;66(2 Pt 1):394–401. doi: 10.1016/s0006-3495(94)80789-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Smith C. B., Betz W. J. Simultaneous independent measurement of endocytosis and exocytosis. Nature. 1996 Apr 11;380(6574):531–534. doi: 10.1038/380531a0. [DOI] [PubMed] [Google Scholar]
  53. Smith C., Moser T., Xu T., Neher E. Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron. 1998 Jun;20(6):1243–1253. doi: 10.1016/s0896-6273(00)80504-8. [DOI] [PubMed] [Google Scholar]
  54. Stevens C. F., Tsujimoto T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):846–849. doi: 10.1073/pnas.92.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Steyer J. A., Horstmann H., Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 1997 Jul 31;388(6641):474–478. doi: 10.1038/41329. [DOI] [PubMed] [Google Scholar]
  56. Swaminathan R., Bicknese S., Periasamy N., Verkman A. S. Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery. Biophys J. 1996 Aug;71(2):1140–1151. doi: 10.1016/S0006-3495(96)79316-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Terakawa S., Fan J. H., Kumakura K., Ohara-Imaizumi M. Quantitative analysis of exocytosis directly visualized in living chromaffin cells. Neurosci Lett. 1991 Feb 11;123(1):82–86. doi: 10.1016/0304-3940(91)90163-n. [DOI] [PubMed] [Google Scholar]
  58. Truskey G. A., Burmeister J. S., Grapa E., Reichert W. M. Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances. J Cell Sci. 1992 Oct;103(Pt 2):491–499. doi: 10.1242/jcs.103.2.491. [DOI] [PubMed] [Google Scholar]
  59. Wacker I., Kaether C., Krömer A., Migala A., Almers W., Gerdes H. H. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci. 1997 Jul;110(Pt 13):1453–1463. doi: 10.1242/jcs.110.13.1453. [DOI] [PubMed] [Google Scholar]
  60. Wall J. E., Buijs-Wilts M., Arnold J. T., Wang W., White M. M., Jennings L. K., Jackson C. W. A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol. 1995 Feb;89(2):380–385. doi: 10.1111/j.1365-2141.1995.tb03315.x. [DOI] [PubMed] [Google Scholar]
  61. Wightman R. M., Jankowski J. A., Kennedy R. T., Kawagoe K. T., Schroeder T. J., Leszczyszyn D. J., Near J. A., Diliberto E. J., Jr, Viveros O. H. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10754–10758. doi: 10.1073/pnas.88.23.10754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. von Rüden L., Neher E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science. 1993 Nov 12;262(5136):1061–1065. doi: 10.1126/science.8235626. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES