Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Feb 28;354(1381):243–257. doi: 10.1098/rstb.1999.0376

Protein-protein interactions and protein modules in the control of neurotransmitter release.

F Benfenati 1, F Onofri 1, S Giovedí 1
PMCID: PMC1692491  PMID: 10212473

Abstract

Information transfer among neurons is operated by neurotransmitters stored in synaptic vesicles and released to the extracellular space by an efficient process of regulated exocytosis. Synaptic vesicles are organized into two distinct functional pools, a large reserve pool in which vesicles are restrained by the actin-based cytoskeleton, and a quantitatively smaller releasable pool in which vesicles approach the presynaptic membrane and eventually fuse with it on stimulation. Both synaptic vesicle trafficking and neurotransmitter release depend on a precise sequence of events that include release from the reserve pool, targeting to the active zone, docking, priming, fusion and endocytotic retrieval of synaptic vesicles. These steps are mediated by a series of specific interactions among cytoskeletal, synaptic vesicle, presynaptic membrane and cytosolic proteins that, by acting in concert, promote the spatial and temporal regulation of the exocytotic machinery. The majority of these interactions are mediated by specific protein modules and domains that are found in many proteins and are involved in numerous intracellular processes. In this paper, the possible physiological role of these multiple protein-protein interactions is analysed, with ensuing updating and clarification of the present molecular model of the process of neurotransmitter release.

Full Text

The Full Text of this article is available as a PDF (299.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnekow A., Jahn R., Schartl M. Synaptophysin: a substrate for the protein tyrosine kinase pp60c-src in intact synaptic vesicles. Oncogene. 1990 Jul;5(7):1019–1024. [PubMed] [Google Scholar]
  2. Barroso M., Nelson D. S., Sztul E. Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):527–531. doi: 10.1073/pnas.92.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bean A. J., Scheller R. H. Better late than never: a role for rabs late in exocytosis. Neuron. 1997 Oct;19(4):751–754. doi: 10.1016/s0896-6273(00)80957-5. [DOI] [PubMed] [Google Scholar]
  4. Bean A. J., Seifert R., Chen Y. A., Sacks R., Scheller R. H. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Nature. 1997 Feb 27;385(6619):826–829. doi: 10.1038/385826a0. [DOI] [PubMed] [Google Scholar]
  5. Benfenati F., Bähler M., Jahn R., Greengard P. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol. 1989 May;108(5):1863–1872. doi: 10.1083/jcb.108.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benfenati F., Greengard P., Brunner J., Bähler M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J Cell Biol. 1989 May;108(5):1851–1862. doi: 10.1083/jcb.108.5.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benfenati F., Valtorta F., Chieregatti E., Greengard P. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron. 1992 Feb;8(2):377–386. doi: 10.1016/0896-6273(92)90303-u. [DOI] [PubMed] [Google Scholar]
  8. Benfenati F., Valtorta F. Neuroexocytosis. Curr Top Microbiol Immunol. 1995;195:195–219. doi: 10.1007/978-3-642-85173-5_9. [DOI] [PubMed] [Google Scholar]
  9. Benfenati F., Valtorta F., Rossi M. C., Onofri F., Sihra T., Greengard P. Interactions of synapsin I with phospholipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures. J Cell Biol. 1993 Dec;123(6 Pt 2):1845–1855. doi: 10.1083/jcb.123.6.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bennett M. K. Ca2+ and the regulation of neurotransmitter secretion. Curr Opin Neurobiol. 1997 Jun;7(3):316–322. doi: 10.1016/s0959-4388(97)80058-x. [DOI] [PubMed] [Google Scholar]
  11. Bernstein B. W., Bamburg J. R. Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron. 1989 Aug;3(2):257–265. doi: 10.1016/0896-6273(89)90039-1. [DOI] [PubMed] [Google Scholar]
  12. Betz A., Okamoto M., Benseler F., Brose N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem. 1997 Jan 24;272(4):2520–2526. doi: 10.1074/jbc.272.4.2520. [DOI] [PubMed] [Google Scholar]
  13. Betz W. J., Angleson J. K. The synaptic vesicle cycle. Annu Rev Physiol. 1998;60:347–363. doi: 10.1146/annurev.physiol.60.1.347. [DOI] [PubMed] [Google Scholar]
  14. Bezprozvanny I., Scheller R. H., Tsien R. W. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature. 1995 Dec 7;378(6557):623–626. doi: 10.1038/378623a0. [DOI] [PubMed] [Google Scholar]
  15. Boxall A. R., Lancaster B. Tyrosine kinases and synaptic transmission. Eur J Neurosci. 1998 Jan;10(1):2–7. doi: 10.1046/j.1460-9568.1998.00009.x. [DOI] [PubMed] [Google Scholar]
  16. Braun J. E., Scheller R. H. Cysteine string protein, a DnaJ family member, is present on diverse secretory vesicles. Neuropharmacology. 1995 Nov;34(11):1361–1369. doi: 10.1016/0028-3908(95)00114-l. [DOI] [PubMed] [Google Scholar]
  17. Broadie K., Prokop A., Bellen H. J., O'Kane C. J., Schulze K. L., Sweeney S. T. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 1995 Sep;15(3):663–673. doi: 10.1016/0896-6273(95)90154-x. [DOI] [PubMed] [Google Scholar]
  18. Brodin L., Löw P., Gad H., Gustafsson J., Pieribone V. A., Shupliakov O. Sustained neurotransmitter release: new molecular clues. Eur J Neurosci. 1997 Dec;9(12):2503–2511. doi: 10.1111/j.1460-9568.1997.tb01679.x. [DOI] [PubMed] [Google Scholar]
  19. Buchner E., Gundersen C. B. The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci. 1997 May;20(5):223–227. doi: 10.1016/s0166-2236(96)10082-5. [DOI] [PubMed] [Google Scholar]
  20. Calakos N., Scheller R. H. Synaptic vesicle biogenesis, docking, and fusion: a molecular description. Physiol Rev. 1996 Jan;76(1):1–29. doi: 10.1152/physrev.1996.76.1.1. [DOI] [PubMed] [Google Scholar]
  21. Ceccaldi P. E., Grohovaz F., Benfenati F., Chieregatti E., Greengard P., Valtorta F. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol. 1995 Mar;128(5):905–912. doi: 10.1083/jcb.128.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chamberlain L. H., Burgoyne R. D. The molecular chaperone function of the secretory vesicle cysteine string proteins. J Biol Chem. 1997 Dec 12;272(50):31420–31426. doi: 10.1074/jbc.272.50.31420. [DOI] [PubMed] [Google Scholar]
  23. Charvin N., L'evêque C., Walker D., Berton F., Raymond C., Kataoka M., Shoji-Kasai Y., Takahashi M., De Waard M., Seagar M. J. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel. EMBO J. 1997 Aug 1;16(15):4591–4596. doi: 10.1093/emboj/16.15.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Cremona O., De Camilli P. Synaptic vesicle endocytosis. Curr Opin Neurobiol. 1997 Jun;7(3):323–330. doi: 10.1016/s0959-4388(97)80059-1. [DOI] [PubMed] [Google Scholar]
  25. Creutz C. E., Pazoles C. J., Pollard H. B. Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem. 1978 Apr 25;253(8):2858–2866. [PubMed] [Google Scholar]
  26. Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
  27. De Camilli P., Benfenati F., Valtorta F., Greengard P. The synapsins. Annu Rev Cell Biol. 1990;6:433–460. doi: 10.1146/annurev.cb.06.110190.002245. [DOI] [PubMed] [Google Scholar]
  28. De Camilli P., Emr S. D., McPherson P. S., Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996 Mar 15;271(5255):1533–1539. doi: 10.1126/science.271.5255.1533. [DOI] [PubMed] [Google Scholar]
  29. Drust D. S., Creutz C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature. 1988 Jan 7;331(6151):88–91. doi: 10.1038/331088a0. [DOI] [PubMed] [Google Scholar]
  30. Erpel T., Courtneidge S. A. Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Opin Cell Biol. 1995 Apr;7(2):176–182. doi: 10.1016/0955-0674(95)80025-5. [DOI] [PubMed] [Google Scholar]
  31. Fanning A. S., Anderson J. M. Protein-protein interactions: PDZ domain networks. Curr Biol. 1996 Nov 1;6(11):1385–1388. doi: 10.1016/s0960-9822(96)00737-3. [DOI] [PubMed] [Google Scholar]
  32. Ferreira A., Kosik K. S., Greengard P., Han H. Q. Aberrant neurites and synaptic vesicle protein deficiency in synapsin II-depleted neurons. Science. 1994 May 13;264(5161):977–979. doi: 10.1126/science.8178158. [DOI] [PubMed] [Google Scholar]
  33. Fujita Y., Shirataki H., Sakisaka T., Asakura T., Ohya T., Kotani H., Yokoyama S., Nishioka H., Matsuura Y., Mizoguchi A. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron. 1998 May;20(5):905–915. doi: 10.1016/s0896-6273(00)80472-9. [DOI] [PubMed] [Google Scholar]
  34. Galli T., Garcia E. P., Mundigl O., Chilcote T. J., De Camilli P. v- and t-SNAREs in neuronal exocytosis: a need for additional components to define sites of release. Neuropharmacology. 1995 Nov;34(11):1351–1360. doi: 10.1016/0028-3908(95)00113-k. [DOI] [PubMed] [Google Scholar]
  35. Geppert M., Goda Y., Hammer R. E., Li C., Rosahl T. W., Stevens C. F., Südhof T. C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994 Nov 18;79(4):717–727. doi: 10.1016/0092-8674(94)90556-8. [DOI] [PubMed] [Google Scholar]
  36. Geppert M., Goda Y., Stevens C. F., Südhof T. C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature. 1997 Jun 19;387(6635):810–814. doi: 10.1038/42954. [DOI] [PubMed] [Google Scholar]
  37. Geppert M., Südhof T. C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci. 1998;21:75–95. doi: 10.1146/annurev.neuro.21.1.75. [DOI] [PubMed] [Google Scholar]
  38. Goda Y. SNAREs and regulated vesicle exocytosis. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):769–772. doi: 10.1073/pnas.94.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Goda Y., Südhof T. C. Calcium regulation of neurotransmitter release: reliably unreliable? Curr Opin Cell Biol. 1997 Aug;9(4):513–518. doi: 10.1016/s0955-0674(97)80027-0. [DOI] [PubMed] [Google Scholar]
  40. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780–785. doi: 10.1126/science.8430330. [DOI] [PubMed] [Google Scholar]
  41. Hanson P. I., Heuser J. E., Jahn R. Neurotransmitter release - four years of SNARE complexes. Curr Opin Neurobiol. 1997 Jun;7(3):310–315. doi: 10.1016/s0959-4388(97)80057-8. [DOI] [PubMed] [Google Scholar]
  42. Hanson P. I., Roth R., Morisaki H., Jahn R., Heuser J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell. 1997 Aug 8;90(3):523–535. doi: 10.1016/s0092-8674(00)80512-7. [DOI] [PubMed] [Google Scholar]
  43. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  45. Hirokawa N., Sobue K., Kanda K., Harada A., Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol. 1989 Jan;108(1):111–126. doi: 10.1083/jcb.108.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ho M. F., Bähler M., Czernik A. J., Schiebler W., Kézdy F. J., Kaiser E. T., Greengard P. Synapsin I is a highly surface-active molecule. J Biol Chem. 1991 Mar 25;266(9):5600–5607. [PubMed] [Google Scholar]
  47. Horikawa H. P., Saisu H., Ishizuka T., Sekine Y., Tsugita A., Odani S., Abe T. A complex of rab3A, SNAP-25, VAMP/synaptobrevin-2 and syntaxins in brain presynaptic terminals. FEBS Lett. 1993 Sep 13;330(2):236–240. doi: 10.1016/0014-5793(93)80281-x. [DOI] [PubMed] [Google Scholar]
  48. Hosono R., Hekimi S., Kamiya Y., Sassa T., Murakami S., Nishiwaki K., Miwa J., Taketo A., Kodaira K. I. The unc-18 gene encodes a novel protein affecting the kinetics of acetylcholine metabolism in the nematode Caenorhabditis elegans. J Neurochem. 1992 Apr;58(4):1517–1525. doi: 10.1111/j.1471-4159.1992.tb11373.x. [DOI] [PubMed] [Google Scholar]
  49. Hosono R., Kamiya Y. Additional genes which result in an elevation of acetylcholine levels by mutations in Caenorhabditis elegans. Neurosci Lett. 1991 Jul 22;128(2):243–244. doi: 10.1016/0304-3940(91)90270-4. [DOI] [PubMed] [Google Scholar]
  50. Hunt J. M., Bommert K., Charlton M. P., Kistner A., Habermann E., Augustine G. J., Betz H. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron. 1994 Jun;12(6):1269–1279. doi: 10.1016/0896-6273(94)90443-x. [DOI] [PubMed] [Google Scholar]
  51. Huttner W. B. Cell biology. Snappy exocytoxins. Nature. 1993 Sep 9;365(6442):104–105. doi: 10.1038/365104a0. [DOI] [PubMed] [Google Scholar]
  52. Jahn R., Südhof T. C. Synaptic vesicles and exocytosis. Annu Rev Neurosci. 1994;17:219–246. doi: 10.1146/annurev.ne.17.030194.001251. [DOI] [PubMed] [Google Scholar]
  53. Johannes L., Doussau F., Clabecq A., Henry J. P., Darchen F., Poulain B. Evidence for a functional link between Rab3 and the SNARE complex. J Cell Sci. 1996 Dec;109(Pt 12):2875–2884. doi: 10.1242/jcs.109.12.2875. [DOI] [PubMed] [Google Scholar]
  54. Johannes L., Galli T., Ludger J. Exocytosis: SNAREs drum up! Eur J Neurosci. 1998 Feb;10(2):415–422. doi: 10.1046/j.1460-9568.1998.00081.x. [DOI] [PubMed] [Google Scholar]
  55. Jovanovic J. N., Benfenati F., Siow Y. L., Sihra T. S., Sanghera J. S., Pelech S. L., Greengard P., Czernik A. J. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3679–3683. doi: 10.1073/pnas.93.8.3679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kato M., Sasaki T., Ohya T., Nakanishi H., Nishioka H., Imamura M., Takai Y. Physical and functional interaction of rabphilin-3A with alpha-actinin. J Biol Chem. 1996 Dec 13;271(50):31775–31778. doi: 10.1074/jbc.271.50.31775. [DOI] [PubMed] [Google Scholar]
  57. Kim D. K., Catterall W. A. Ca2+-dependent and -independent interactions of the isoforms of the alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14782–14786. doi: 10.1073/pnas.94.26.14782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kuromi H., Kidokoro Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron. 1998 May;20(5):917–925. doi: 10.1016/s0896-6273(00)80473-0. [DOI] [PubMed] [Google Scholar]
  59. Landis D. M., Hall A. K., Weinstein L. A., Reese T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron. 1988 May;1(3):201–209. doi: 10.1016/0896-6273(88)90140-7. [DOI] [PubMed] [Google Scholar]
  60. Lin R. C., Scheller R. H. Structural organization of the synaptic exocytosis core complex. Neuron. 1997 Nov;19(5):1087–1094. doi: 10.1016/s0896-6273(00)80399-2. [DOI] [PubMed] [Google Scholar]
  61. Linial M. SNARE proteins--why so many, why so few? J Neurochem. 1997 Nov;69(5):1781–1792. doi: 10.1046/j.1471-4159.1997.69051781.x. [DOI] [PubMed] [Google Scholar]
  62. Lu B., Greengard P., Poo M. M. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron. 1992 Mar;8(3):521–529. doi: 10.1016/0896-6273(92)90280-q. [DOI] [PubMed] [Google Scholar]
  63. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  64. Martin T. F. Phosphoinositides as spatial regulators of membrane traffic. Curr Opin Neurobiol. 1997 Jun;7(3):331–338. doi: 10.1016/s0959-4388(97)80060-8. [DOI] [PubMed] [Google Scholar]
  65. Mayer A., Wickner W., Haas A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell. 1996 Apr 5;85(1):83–94. doi: 10.1016/s0092-8674(00)81084-3. [DOI] [PubMed] [Google Scholar]
  66. Mayer B. J., Eck M. J. SH3 domains. Minding your p's and q's. Curr Biol. 1995 Apr 1;5(4):364–367. doi: 10.1016/s0960-9822(95)00073-x. [DOI] [PubMed] [Google Scholar]
  67. McMahon H. T., Missler M., Li C., Südhof T. C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995 Oct 6;83(1):111–119. doi: 10.1016/0092-8674(95)90239-2. [DOI] [PubMed] [Google Scholar]
  68. McPherson P. S., Czernik A. J., Chilcote T. J., Onofri F., Benfenati F., Greengard P., Schlessinger J., De Camilli P. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6486–6490. doi: 10.1073/pnas.91.14.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Meers P., Bentz J., Alford D., Nir S., Papahadjopoulos D., Hong K. Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry. 1988 Jun 14;27(12):4430–4439. doi: 10.1021/bi00412a033. [DOI] [PubMed] [Google Scholar]
  70. Miyazaki M., Shirataki H., Kohno H., Kaibuchi K., Tsugita A., Takai Y. Identification as beta-adducin of a protein interacting with rabphilin-3A in the presence of Ca2+ and phosphatidylserine. Biochem Biophys Res Commun. 1994 Nov 30;205(1):460–466. doi: 10.1006/bbrc.1994.2688. [DOI] [PubMed] [Google Scholar]
  71. Morton C. J., Campbell I. D. SH3 domains. Molecular 'Velcro'. Curr Biol. 1994 Jul 1;4(7):615–617. doi: 10.1016/s0960-9822(00)00134-2. [DOI] [PubMed] [Google Scholar]
  72. Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron. 1998 Mar;20(3):389–399. doi: 10.1016/s0896-6273(00)80983-6. [DOI] [PubMed] [Google Scholar]
  73. Nichols B. J., Ungermann C., Pelham H. R., Wickner W. T., Haas A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 1997 May 8;387(6629):199–202. doi: 10.1038/387199a0. [DOI] [PubMed] [Google Scholar]
  74. Nielander H. B., Onofri F., Schaeffer E., Menegon A., Fesce R., Valtorta F., Greengard P., Benfenati F. Phosphorylation-dependent effects of synapsin IIa on actin polymerization and network formation. Eur J Neurosci. 1997 Dec;9(12):2712–2722. doi: 10.1111/j.1460-9568.1997.tb01700.x. [DOI] [PubMed] [Google Scholar]
  75. Nonet M. L., Grundahl K., Meyer B. J., Rand J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell. 1993 Jul 2;73(7):1291–1305. doi: 10.1016/0092-8674(93)90357-v. [DOI] [PubMed] [Google Scholar]
  76. Okamoto M., Südhof T. C. Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem. 1997 Dec 12;272(50):31459–31464. doi: 10.1074/jbc.272.50.31459. [DOI] [PubMed] [Google Scholar]
  77. Onofri F., Giovedì S., Vaccaro P., Czernik A. J., Valtorta F., De Camilli P., Greengard P., Benfenati F. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12168–12173. doi: 10.1073/pnas.94.22.12168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pang D. T., Wang J. K., Valtorta F., Benfenati F., Greengard P. Protein tyrosine phosphorylation in synaptic vesicles. Proc Natl Acad Sci U S A. 1988 Feb;85(3):762–766. doi: 10.1073/pnas.85.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  80. Pawson T., Schlessingert J. SH2 and SH3 domains. Curr Biol. 1993 Jul 1;3(7):434–442. doi: 10.1016/0960-9822(93)90350-w. [DOI] [PubMed] [Google Scholar]
  81. Pellegrini L. L., O'Connor V., Lottspeich F., Betz H. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. EMBO J. 1995 Oct 2;14(19):4705–4713. doi: 10.1002/j.1460-2075.1995.tb00152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Pieribone V. A., Shupliakov O., Brodin L., Hilfiker-Rothenfluh S., Czernik A. J., Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995 Jun 8;375(6531):493–497. doi: 10.1038/375493a0. [DOI] [PubMed] [Google Scholar]
  83. Prekeris R., Terrian D. M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol. 1997 Jun 30;137(7):1589–1601. doi: 10.1083/jcb.137.7.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Rosahl T. W., Spillane D., Missler M., Herz J., Selig D. K., Wolff J. R., Hammer R. E., Malenka R. C., Südhof T. C. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature. 1995 Jun 8;375(6531):488–493. doi: 10.1038/375488a0. [DOI] [PubMed] [Google Scholar]
  85. Ryan T. A., Li L., Chin L. S., Greengard P., Smith S. J. Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol. 1996 Sep;134(5):1219–1227. doi: 10.1083/jcb.134.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Schaeffer E., Alder J., Greengard P., Poo M. M. Synapsin IIa accelerates functional development of neuromuscular synapses. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3882–3886. doi: 10.1073/pnas.91.9.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  88. Schiavo G., Gmachl M. J., Stenbeck G., Söllner T. H., Rothman J. E. A possible docking and fusion particle for synaptic transmission. Nature. 1995 Dec 14;378(6558):733–736. doi: 10.1038/378733a0. [DOI] [PubMed] [Google Scholar]
  89. Schiavo G., Gu Q. M., Prestwich G. D., Söllner T. H., Rothman J. E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13327–13332. doi: 10.1073/pnas.93.23.13327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Schiavo G., Poulain B., Benfenati F., DasGupta B. R., Montecucco C. Novel targets and catalytic activities of bacterial protein toxins. Trends Microbiol. 1993 Aug;1(5):170–174. doi: 10.1016/0966-842x(93)90086-7. [DOI] [PubMed] [Google Scholar]
  91. Schiavo G., Stenbeck G., Rothman J. E., Söllner T. H. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):997–1001. doi: 10.1073/pnas.94.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Schivell A. E., Batchelor R. H., Bajjalieh S. M. Isoform-specific, calcium-regulated interaction of the synaptic vesicle proteins SV2 and synaptotagmin. J Biol Chem. 1996 Nov 1;271(44):27770–27775. doi: 10.1074/jbc.271.44.27770. [DOI] [PubMed] [Google Scholar]
  93. Shao X., Davletov B. A., Sutton R. B., Südhof T. C., Rizo J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 1996 Jul 12;273(5272):248–251. doi: 10.1126/science.273.5272.248. [DOI] [PubMed] [Google Scholar]
  94. Shao X., Li C., Fernandez I., Zhang X., Südhof T. C., Rizo J. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron. 1997 Jan;18(1):133–142. doi: 10.1016/s0896-6273(01)80052-0. [DOI] [PubMed] [Google Scholar]
  95. Silver P. A., Way J. C. Eukaryotic DnaJ homologs and the specificity of Hsp70 activity. Cell. 1993 Jul 16;74(1):5–6. doi: 10.1016/0092-8674(93)90287-z. [DOI] [PubMed] [Google Scholar]
  96. Simon J. A., Schreiber S. L. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Chem Biol. 1995 Jan;2(1):53–60. doi: 10.1016/1074-5521(95)90080-2. [DOI] [PubMed] [Google Scholar]
  97. Stahl B., Chou J. H., Li C., Südhof T. C., Jahn R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J. 1996 Apr 15;15(8):1799–1809. [PMC free article] [PubMed] [Google Scholar]
  98. Stefani G., Onofri F., Valtorta F., Vaccaro P., Greengard P., Benfenati F. Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. J Physiol. 1997 Nov 1;504(Pt 3):501–515. doi: 10.1111/j.1469-7793.1997.501bd.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Stenius K., Janz R., Südhof T. C., Jahn R. Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J Cell Biol. 1995 Dec;131(6 Pt 2):1801–1809. doi: 10.1083/jcb.131.6.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Sudol M. The WW module competes with the SH3 domain? Trends Biochem Sci. 1996 May;21(5):161–163. [PubMed] [Google Scholar]
  101. Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
  102. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  103. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  104. Südhof T. C. Function of Rab3 GDP-GTP exchange. Neuron. 1997 Apr;18(4):519–522. doi: 10.1016/s0896-6273(00)80292-5. [DOI] [PubMed] [Google Scholar]
  105. Südhof T. C., Rizo J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron. 1996 Sep;17(3):379–388. doi: 10.1016/s0896-6273(00)80171-3. [DOI] [PubMed] [Google Scholar]
  106. Takei Y., Harada A., Takeda S., Kobayashi K., Terada S., Noda T., Takahashi T., Hirokawa N. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J Cell Biol. 1995 Dec;131(6 Pt 2):1789–1800. doi: 10.1083/jcb.131.6.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Thomas S. M., Brugge J. S. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609. doi: 10.1146/annurev.cellbio.13.1.513. [DOI] [PubMed] [Google Scholar]
  108. Torri Tarelli F., Bossi M., Fesce R., Greengard P., Valtorta F. Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron. 1992 Dec;9(6):1143–1153. doi: 10.1016/0896-6273(92)90072-l. [DOI] [PubMed] [Google Scholar]
  109. Umbach J. A., Zinsmaier K. E., Eberle K. K., Buchner E., Benzer S., Gundersen C. B. Presynaptic dysfunction in Drosophila csp mutants. Neuron. 1994 Oct;13(4):899–907. doi: 10.1016/0896-6273(94)90255-0. [DOI] [PubMed] [Google Scholar]
  110. Valtorta F., Iezzi N., Benfenati F., Lu B., Poo M. M., Greengard P. Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis. Eur J Neurosci. 1995 Feb 1;7(2):261–270. doi: 10.1111/j.1460-9568.1995.tb01062.x. [DOI] [PubMed] [Google Scholar]
  111. Verhage M., de Vries K. J., Røshol H., Burbach J. P., Gispen W. H., Südhof T. C. DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron. 1997 Mar;18(3):453–461. doi: 10.1016/s0896-6273(00)81245-3. [DOI] [PubMed] [Google Scholar]
  112. Walch-Solimena C., Blasi J., Edelmann L., Chapman E. R., von Mollard G. F., Jahn R. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J Cell Biol. 1995 Feb;128(4):637–645. doi: 10.1083/jcb.128.4.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Wang Y., Okamoto M., Schmitz F., Hofmann K., Südhof T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature. 1997 Aug 7;388(6642):593–598. doi: 10.1038/41580. [DOI] [PubMed] [Google Scholar]
  114. Weber T., Zemelman B. V., McNew J. A., Westermann B., Gmachl M., Parlati F., Söllner T. H., Rothman J. E. SNAREpins: minimal machinery for membrane fusion. Cell. 1998 Mar 20;92(6):759–772. doi: 10.1016/s0092-8674(00)81404-x. [DOI] [PubMed] [Google Scholar]
  115. White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  116. Wiedemann C., Schäfer T., Burger M. M., Sihra T. S. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J Neurosci. 1998 Aug 1;18(15):5594–5602. doi: 10.1523/JNEUROSCI.18-15-05594.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Zucker R. S. Exocytosis: a molecular and physiological perspective. Neuron. 1996 Dec;17(6):1049–1055. doi: 10.1016/s0896-6273(00)80238-x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES