Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Feb 28;354(1381):337–346. doi: 10.1098/rstb.1999.0385

Properties of fast endocytosis at hippocampal synapses.

E T Kavalali 1, J Klingauf 1, R W Tsien 1
PMCID: PMC1692492  PMID: 10212482

Abstract

Regulation of synaptic transmission is a widespread means for dynamic alterations in nervous system function. In several cases, this regulation targets vesicular recycling in presynaptic terminals and may result in substantial changes in efficiency of synaptic transmission. Traditionally, experimental accessibility of the synaptic vesicle cycle in central neuronal synapses has been largely limited to the exocytotic side, which can be monitored with electrophysiological responses to neurotransmitter release. Recently, physiological measurements on the endocytotic portion of the cycle have been made possible by the introduction of styryl dyes such as FM1-43 as fluorescent markers for recycling synaptic vesicles. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was greatly speeded by exposure to staurosporine or elevated extracellular calcium. The effective time-constant for retrieval can be < 2 seconds under appropriate conditions. Thus, hippocampal synapses capitalize on efficient mechanisms for endocytosis and their vesicular retrieval is subject to modulatory control.

Full Text

The Full Text of this article is available as a PDF (348.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artalejo C. R., Henley J. R., McNiven M. A., Palfrey H. C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8328–8332. doi: 10.1073/pnas.92.18.8328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betz W. J., Bewick G. S. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J Physiol. 1993 Jan;460:287–309. doi: 10.1113/jphysiol.1993.sp019472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betz W. J., Mao F., Smith C. B. Imaging exocytosis and endocytosis. Curr Opin Neurobiol. 1996 Jun;6(3):365–371. doi: 10.1016/s0959-4388(96)80121-8. [DOI] [PubMed] [Google Scholar]
  4. Burgoyne R. D. Fast exocytosis and endocytosis triggered by depolarisation in single adrenal chromaffin cells before rapid Ca2+ current run-down. Pflugers Arch. 1995 Jun;430(2):213–219. doi: 10.1007/BF00374652. [DOI] [PubMed] [Google Scholar]
  5. Ceccarelli B., Hurlbut W. P. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1980 Oct;87(1):297–303. doi: 10.1083/jcb.87.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ceccarelli B., Hurlbut W. P., Mauro A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):499–524. doi: 10.1083/jcb.57.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cremona O., De Camilli P. Synaptic vesicle endocytosis. Curr Opin Neurobiol. 1997 Jun;7(3):323–330. doi: 10.1016/s0959-4388(97)80059-1. [DOI] [PubMed] [Google Scholar]
  8. Engisch K. L., Nowycky M. C. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J Physiol. 1998 Feb 1;506(Pt 3):591–608. doi: 10.1111/j.1469-7793.1998.591bv.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fesce R., Grohovaz F., Valtorta F., Meldolesi J. Neurotransmitter release: fusion or 'kiss-and-run'? Trends Cell Biol. 1994 Jan;4(1):1–4. doi: 10.1016/0962-8924(94)90025-6. [DOI] [PubMed] [Google Scholar]
  10. Harris K. M., Sultan P. Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology. 1995 Nov;34(11):1387–1395. doi: 10.1016/0028-3908(95)00142-s. [DOI] [PubMed] [Google Scholar]
  11. Henkel A. W., Almers W. Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr Opin Neurobiol. 1996 Jun;6(3):350–357. doi: 10.1016/s0959-4388(96)80119-x. [DOI] [PubMed] [Google Scholar]
  12. Henkel A. W., Betz W. J. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J Neurosci. 1995 Dec;15(12):8246–8258. doi: 10.1523/JNEUROSCI.15-12-08246.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klingauf J., Kavalali E. T., Tsien R. W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature. 1998 Aug 6;394(6693):581–585. doi: 10.1038/29079. [DOI] [PubMed] [Google Scholar]
  15. Koenig J. H., Ikeda K. Synaptic vesicles have two distinct recycling pathways. J Cell Biol. 1996 Nov;135(3):797–808. doi: 10.1083/jcb.135.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kraszewski K., Daniell L., Mundigl O., De Camilli P. Mobility of synaptic vesicles in nerve endings monitored by recovery from photobleaching of synaptic vesicle-associated fluorescence. J Neurosci. 1996 Oct 1;16(19):5905–5913. doi: 10.1523/JNEUROSCI.16-19-05905.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lagnado L., Gomis A., Job C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron. 1996 Nov;17(5):957–967. doi: 10.1016/s0896-6273(00)80226-3. [DOI] [PubMed] [Google Scholar]
  18. Malgaroli A., Tsien R. W. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature. 1992 May 14;357(6374):134–139. doi: 10.1038/357134a0. [DOI] [PubMed] [Google Scholar]
  19. Miller T. M., Heuser J. E. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol. 1984 Feb;98(2):685–698. doi: 10.1083/jcb.98.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murthy V. N., Stevens C. F. Synaptic vesicles retain their identity through the endocytic cycle. Nature. 1998 Apr 2;392(6675):497–501. doi: 10.1038/33152. [DOI] [PubMed] [Google Scholar]
  21. Parsons T. D., Lenzi D., Almers W., Roberts W. M. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron. 1994 Oct;13(4):875–883. doi: 10.1016/0896-6273(94)90253-4. [DOI] [PubMed] [Google Scholar]
  22. Plattner H., Braun C., Hentschel J. Facilitation of membrane fusion during exocytosis and exocytosis-coupled endocytosis and acceleration of "ghost" detachment in Paramecium by extracellular calcium. A quenched-flow/freeze-fracture analysis. J Membr Biol. 1997 Aug 1;158(3):197–208. doi: 10.1007/s002329900257. [DOI] [PubMed] [Google Scholar]
  23. Ramaswami M., Krishnan K. S., Kelly R. B. Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron. 1994 Aug;13(2):363–375. doi: 10.1016/0896-6273(94)90353-0. [DOI] [PubMed] [Google Scholar]
  24. Reid C. A., Clements J. D., Bekkers J. M. Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J Neurosci. 1997 Apr 15;17(8):2738–2745. doi: 10.1523/JNEUROSCI.17-08-02738.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reuter H. Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca(2+)-channel blockers. Neuron. 1995 Apr;14(4):773–779. doi: 10.1016/0896-6273(95)90221-x. [DOI] [PubMed] [Google Scholar]
  26. Ryan T. A., Reuter H., Wendland B., Schweizer F. E., Tsien R. W., Smith S. J. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron. 1993 Oct;11(4):713–724. doi: 10.1016/0896-6273(93)90081-2. [DOI] [PubMed] [Google Scholar]
  27. Ryan T. A., Smith S. J., Reuter H. The timing of synaptic vesicle endocytosis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5567–5571. doi: 10.1073/pnas.93.11.5567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scepek S., Coorssen J. R., Lindau M. Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J. 1998 Aug 3;17(15):4340–4345. doi: 10.1093/emboj/17.15.4340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schikorski T., Stevens C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci. 1997 Aug 1;17(15):5858–5867. doi: 10.1523/JNEUROSCI.17-15-05858.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith C., Neher E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J Cell Biol. 1997 Nov 17;139(4):885–894. doi: 10.1083/jcb.139.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takei K., Mundigl O., Daniell L., De Camilli P. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol. 1996 Jun;133(6):1237–1250. doi: 10.1083/jcb.133.6.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thomas P., Lee A. K., Wong J. G., Almers W. A triggered mechanism retrieves membrane in seconds after Ca(2+)-stimulated exocytosis in single pituitary cells. J Cell Biol. 1994 Mar;124(5):667–675. doi: 10.1083/jcb.124.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang L. Y., Kaczmarek L. K. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature. 1998 Jul 23;394(6691):384–388. doi: 10.1038/28645. [DOI] [PubMed] [Google Scholar]
  34. Wu L. G., Betz W. J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron. 1996 Oct;17(4):769–779. doi: 10.1016/s0896-6273(00)80208-1. [DOI] [PubMed] [Google Scholar]
  35. von Gersdorff H., Matthews G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature. 1994 Aug 25;370(6491):652–655. doi: 10.1038/370652a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES