Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Feb 28;354(1381):259–268. doi: 10.1098/rstb.1999.0377

Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses.

R Pellizzari 1, O Rossetto 1, G Schiavo 1, C Montecucco 1
PMCID: PMC1692495  PMID: 10212474

Abstract

The clostridial neurotoxins responsible for tetanus and botulism are proteins consisting of three domains endowed with different functions: neurospecific binding, membrane translocation and proteolysis for specific components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction, is internalized and transported retroaxonally to the spinal cord. The spastic paralysis induced by the toxin is due to the blockade of neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven serotypes of botulinum neurotoxins (BoNTs) act at the periphery by inducing a flaccid paralysis due to the inhibition of acetylcholine release at the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G cleave specifically at single but different peptide bonds, of the vesicle associated membrane protein (VAMP) synaptobrevin, a membrane protein of small synaptic vesicles (SSVs). BoNT types A, C and E cleave SNAP-25 at different sites located within the carboxyl-terminus, while BoNT type C additionally cleaves syntaxin. The remarkable specificity of BoNTs is exploited in the treatment of human diseases characterized by a hyperfunction of cholinergic terminals.

Full Text

The Full Text of this article is available as a PDF (192.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakry N., Kamata Y., Sorensen R., Simpson L. L. Tetanus toxin and neuronal membranes: the relationship between binding and toxicity. J Pharmacol Exp Ther. 1991 Aug;258(2):613–619. [PubMed] [Google Scholar]
  2. Beise J., Hahnen J., Andersen-Beckh B., Dreyer F. Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule. Naunyn Schmiedebergs Arch Pharmacol. 1994 Jan;349(1):66–73. doi: 10.1007/BF00178208. [DOI] [PubMed] [Google Scholar]
  3. Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Südhof T. C., Jahn R., Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994 Jan 21;269(3):1617–1620. [PubMed] [Google Scholar]
  4. Bizzini B., Stoeckel K., Schwab M. An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem. 1977 Mar;28(3):529–542. doi: 10.1111/j.1471-4159.1977.tb10423.x. [DOI] [PubMed] [Google Scholar]
  5. Black J. D., Dolly J. O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol. 1986 Aug;103(2):521–534. doi: 10.1083/jcb.103.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Black J. D., Dolly J. O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol. 1986 Aug;103(2):535–544. doi: 10.1083/jcb.103.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blasi J., Chapman E. R., Link E., Binz T., Yamasaki S., De Camilli P., Südhof T. C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993 Sep 9;365(6442):160–163. doi: 10.1038/365160a0. [DOI] [PubMed] [Google Scholar]
  8. Blasi J., Chapman E. R., Yamasaki S., Binz T., Niemann H., Jahn R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 1993 Dec;12(12):4821–4828. doi: 10.1002/j.1460-2075.1993.tb06171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blaustein R. O., Germann W. J., Finkelstein A., DasGupta B. R. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett. 1987 Dec 21;226(1):115–120. doi: 10.1016/0014-5793(87)80562-8. [DOI] [PubMed] [Google Scholar]
  10. Bode W., Gomis-Rüth F. X., Stöckler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 1993 Sep 27;331(1-2):134–140. doi: 10.1016/0014-5793(93)80312-i. [DOI] [PubMed] [Google Scholar]
  11. Boquet P., Duflot E., Hauttecoeur B. Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur J Biochem. 1984 Oct 15;144(2):339–344. doi: 10.1111/j.1432-1033.1984.tb08469.x. [DOI] [PubMed] [Google Scholar]
  12. Boquet P., Duflot E. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7614–7618. doi: 10.1073/pnas.79.24.7614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cabiaux V., Lorge P., Vandenbranden M., Falmagne P., Ruysschaert J. M. Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem Biophys Res Commun. 1985 Apr 30;128(2):840–849. doi: 10.1016/0006-291x(85)90123-8. [DOI] [PubMed] [Google Scholar]
  14. Chapman E. R., An S., Barton N., Jahn R. SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem. 1994 Nov 4;269(44):27427–27432. [PubMed] [Google Scholar]
  15. Coen L., Osta R., Maury M., Brûlet P. Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9400–9405. doi: 10.1073/pnas.94.17.9400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cornille F., Goudreau N., Ficheux D., Niemann H., Roques B. P. Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1-93 by tetanus toxin L chain. Eur J Biochem. 1994 May 15;222(1):173–181. doi: 10.1111/j.1432-1033.1994.tb18855.x. [DOI] [PubMed] [Google Scholar]
  17. Cornille F., Martin L., Lenoir C., Cussac D., Roques B. P., Fournie-Zaluski M. C. Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J Biol Chem. 1997 Feb 7;272(6):3459–3464. doi: 10.1074/jbc.272.6.3459. [DOI] [PubMed] [Google Scholar]
  18. Critchley D. R., Nelson P. G., Habig W. H., Fishman P. H. Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J Cell Biol. 1985 May;100(5):1499–1507. doi: 10.1083/jcb.100.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. De Filippis V., Vangelista L., Schiavo G., Tonello F., Montecucco C. Structural studies on the zinc-endopeptidase light chain of tetanus neurotoxin. Eur J Biochem. 1995 Apr 1;229(1):61–69. doi: 10.1111/j.1432-1033.1995.tb20437.x. [DOI] [PubMed] [Google Scholar]
  20. Dolly J. O., Black J., Williams R. S., Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984 Feb 2;307(5950):457–460. doi: 10.1038/307457a0. [DOI] [PubMed] [Google Scholar]
  21. Donovan J. J., Middlebrook J. L. Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry. 1986 May 20;25(10):2872–2876. doi: 10.1021/bi00358a020. [DOI] [PubMed] [Google Scholar]
  22. Eisel U., Reynolds K., Riddick M., Zimmer A., Niemann H., Zimmer A. Tetanus toxin light chain expression in Sertoli cells of transgenic mice causes alterations of the actin cytoskeleton and disrupts spermatogenesis. EMBO J. 1993 Sep;12(9):3365–3372. doi: 10.1002/j.1460-2075.1993.tb06010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Eleopra R., Tugnoli V., Rossetto O., Montecucco C., De Grandis D. Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett. 1997 Mar 14;224(2):91–94. doi: 10.1016/s0304-3940(97)13448-6. [DOI] [PubMed] [Google Scholar]
  24. Foran P., Lawrence G. W., Shone C. C., Foster K. A., Dolly J. O. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry. 1996 Feb 27;35(8):2630–2636. doi: 10.1021/bi9519009. [DOI] [PubMed] [Google Scholar]
  25. Galazka A., Gasse F. The present status of tetanus and tetanus vaccination. Curr Top Microbiol Immunol. 1995;195:31–53. doi: 10.1007/978-3-642-85173-5_2. [DOI] [PubMed] [Google Scholar]
  26. Gambale F., Montal M. Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys J. 1988 May;53(5):771–783. doi: 10.1016/S0006-3495(88)83157-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. HUGHES R., WHALER B. C. Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol. 1962 Feb;160:221–233. doi: 10.1113/jphysiol.1962.sp006843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Habermann E., Dreyer F., Bigalke H. Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedebergs Arch Pharmacol. 1980 Feb;311(1):33–40. doi: 10.1007/BF00500299. [DOI] [PubMed] [Google Scholar]
  29. Habermann E., Dreyer F. Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol. 1986;129:93–179. doi: 10.1007/978-3-642-71399-6_2. [DOI] [PubMed] [Google Scholar]
  30. Halpern J. L., Loftus A. Characterization of the receptor-binding domain of tetanus toxin. J Biol Chem. 1993 May 25;268(15):11188–11192. [PubMed] [Google Scholar]
  31. Halpern J. L., Neale E. A. Neurospecific binding, internalization, and retrograde axonal transport. Curr Top Microbiol Immunol. 1995;195:221–241. doi: 10.1007/978-3-642-85173-5_10. [DOI] [PubMed] [Google Scholar]
  32. Hayashi T., McMahon H., Yamasaki S., Binz T., Hata Y., Südhof T. C., Niemann H. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 1994 Nov 1;13(21):5051–5061. doi: 10.1002/j.1460-2075.1994.tb06834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Helting T. B., Zwisler O., Wiegandt H. Structure of tetanus toxin. II. Toxin binding to ganglioside. J Biol Chem. 1977 Jan 10;252(1):194–198. [PubMed] [Google Scholar]
  35. Hoch D. H., Romero-Mira M., Ehrlich B. E., Finkelstein A., DasGupta B. R., Simpson L. L. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1692–1696. doi: 10.1073/pnas.82.6.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hunt J. M., Bommert K., Charlton M. P., Kistner A., Habermann E., Augustine G. J., Betz H. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron. 1994 Jun;12(6):1269–1279. doi: 10.1016/0896-6273(94)90443-x. [DOI] [PubMed] [Google Scholar]
  37. Höhne-Zell B., Ecker A., Weller U., Gratzl M. Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells. FEBS Lett. 1994 Nov 28;355(2):131–134. doi: 10.1016/0014-5793(94)01192-3. [DOI] [PubMed] [Google Scholar]
  38. Jiang W., Bond J. S. Families of metalloendopeptidases and their relationships. FEBS Lett. 1992 Nov 9;312(2-3):110–114. doi: 10.1016/0014-5793(92)80916-5. [DOI] [PubMed] [Google Scholar]
  39. Kozaki S., Miki A., Kamata Y., Ogasawara J., Sakaguchi G. Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect Immun. 1989 Sep;57(9):2634–2639. doi: 10.1128/iai.57.9.2634-2639.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Krieglstein K. G., Henschen A. H., Weller U., Habermann E. Limited proteolysis of tetanus toxin. Relation to activity and identification of cleavage sites. Eur J Biochem. 1991 Nov 15;202(1):41–51. doi: 10.1111/j.1432-1033.1991.tb16342.x. [DOI] [PubMed] [Google Scholar]
  41. Kurazono H., Mochida S., Binz T., Eisel U., Quanz M., Grebenstein O., Wernars K., Poulain B., Tauc L., Niemann H. Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. J Biol Chem. 1992 Jul 25;267(21):14721–14729. [PubMed] [Google Scholar]
  42. Lacy D. B., Tepp W., Cohen A. C., DasGupta B. R., Stevens R. C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998 Oct;5(10):898–902. doi: 10.1038/2338. [DOI] [PubMed] [Google Scholar]
  43. Lebeda F. J., Olson M. A. Structural predictions of the channel-forming region of botulinum neurotoxin heavy chain. Toxicon. 1995 Apr;33(4):559–567. doi: 10.1016/0041-0101(94)00192-b. [DOI] [PubMed] [Google Scholar]
  44. Ludlow C. L., Hallett M., Rhew K., Cole R., Shimizu T., Sakaguchi G., Bagley J. A., Schulz G. M., Yin S. G., Koda J. Therapeutic use of type F botulinum toxin. N Engl J Med. 1992 Jan 30;326(5):349–350. doi: 10.1056/NEJM199201303260516. [DOI] [PubMed] [Google Scholar]
  45. Matsuda M., Sugimoto N., Ozutsumi K., Hirai T. Acute botulinum-like intoxication by tetanus neurotoxin in mice. Biochem Biophys Res Commun. 1982 Jan 29;104(2):799–805. doi: 10.1016/0006-291x(82)90708-2. [DOI] [PubMed] [Google Scholar]
  46. Matteoli M., Verderio C., Rossetto O., Iezzi N., Coco S., Schiavo G., Montecucco C. Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13310–13315. doi: 10.1073/pnas.93.23.13310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mellanby J., Beaumont M. A., Thompson P. A. The effect of lanthanum on nerve terminals in goldfish muscle after paralysis with tetanus toxin. Neuroscience. 1988 Jun;25(3):1095–1106. doi: 10.1016/0306-4522(88)90062-0. [DOI] [PubMed] [Google Scholar]
  48. Mellanby J., Hawkins C., Mellanby H., Rawlins J. N., Impey M. E. Tetanus toxin as a tool for studying epilepsy. J Physiol (Paris) 1984;79(4):207–215. [PubMed] [Google Scholar]
  49. Menestrina G., Forti S., Gambale F. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys J. 1989 Mar;55(3):393–405. doi: 10.1016/S0006-3495(89)82833-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Menestrina G., Schiavo G., Montecucco C. Molecular mechanisms of action of bacterial protein toxins. Mol Aspects Med. 1994;15(2):79–193. doi: 10.1016/0098-2997(94)90043-4. [DOI] [PubMed] [Google Scholar]
  51. Minton N. P. Molecular genetics of clostridial neurotoxins. Curr Top Microbiol Immunol. 1995;195:161–194. doi: 10.1007/978-3-642-85173-5_8. [DOI] [PubMed] [Google Scholar]
  52. Mochida S., Poulain B., Weller U., Habermann E., Tauc L. Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain. FEBS Lett. 1989 Aug 14;253(1-2):47–51. doi: 10.1016/0014-5793(89)80926-3. [DOI] [PubMed] [Google Scholar]
  53. Montecucco C., Papini E., Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 1994 Jun 6;346(1):92–98. doi: 10.1016/0014-5793(94)00449-8. [DOI] [PubMed] [Google Scholar]
  54. Montecucco C., Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995 Nov;28(4):423–472. doi: 10.1017/s0033583500003292. [DOI] [PubMed] [Google Scholar]
  55. Montecucco C., Schiavo G. Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem Sci. 1993 Sep;18(9):324–327. doi: 10.1016/0968-0004(93)90065-u. [DOI] [PubMed] [Google Scholar]
  56. Morante S., Furenlid L., Schiavo G., Tonello F., Zwilling R., Montecucco C. X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin. Eur J Biochem. 1996 Feb 1;235(3):606–612. doi: 10.1111/j.1432-1033.1996.00606.x. [DOI] [PubMed] [Google Scholar]
  57. Morris N. P., Consiglio E., Kohn L. D., Habig W. H., Hardegree M. C., Helting T. B. Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem. 1980 Jul 10;255(13):6071–6076. [PubMed] [Google Scholar]
  58. Nishiki T., Tokuyama Y., Kamata Y., Nemoto Y., Yoshida A., Sato K., Sekiguchi M., Takahashi M., Kozaki S. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett. 1996 Jan 15;378(3):253–257. doi: 10.1016/0014-5793(95)01471-3. [DOI] [PubMed] [Google Scholar]
  59. Nishiki T., Tokuyama Y., Kamata Y., Nemoto Y., Yoshida A., Sekiguchi M., Takahashi M., Kozaki S. Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA. Neurosci Lett. 1996 Apr 19;208(2):105–108. doi: 10.1016/0304-3940(96)12557-x. [DOI] [PubMed] [Google Scholar]
  60. Osen-Sand A., Staple J. K., Naldi E., Schiavo G., Rossetto O., Petitpierre S., Malgaroli A., Montecucco C., Catsicas S. Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol. 1996 Apr 1;367(2):222–234. doi: 10.1002/(SICI)1096-9861(19960401)367:2<222::AID-CNE5>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  61. Parton R. G., Ockleford C. D., Critchley D. R. A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J Neurochem. 1987 Oct;49(4):1057–1068. doi: 10.1111/j.1471-4159.1987.tb09994.x. [DOI] [PubMed] [Google Scholar]
  62. Parton R. G., Ockleford C. D., Critchley D. R. Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res. 1988 Dec 13;475(1):118–127. doi: 10.1016/0006-8993(88)90204-1. [DOI] [PubMed] [Google Scholar]
  63. Patarnello T., Bargelloni L., Rossetto O., Schiavo G., Montecucco C. Neurotransmission and secretion. Nature. 1993 Aug 12;364(6438):581–582. doi: 10.1038/364581b0. [DOI] [PubMed] [Google Scholar]
  64. Pellegrini L. L., O'Connor V., Lottspeich F., Betz H. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. EMBO J. 1995 Oct 2;14(19):4705–4713. doi: 10.1002/j.1460-2075.1995.tb00152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Pellizzari R., Mason S., Shone C. C., Montecucco C. The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett. 1997 Jun 16;409(3):339–342. doi: 10.1016/s0014-5793(97)00482-1. [DOI] [PubMed] [Google Scholar]
  66. Pierce E. J., Davison M. D., Parton R. G., Habig W. H., Critchley D. R. Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J. 1986 Jun 15;236(3):845–852. doi: 10.1042/bj2360845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Poulain B., Mochida S., Weller U., Högy B., Habermann E., Wadsworth J. D., Shone C. C., Dolly J. O., Tauc L. Heterologous combinations of heavy and light chains from botulinum neurotoxin A and tetanus toxin inhibit neurotransmitter release in Aplysia. J Biol Chem. 1991 May 25;266(15):9580–9585. [PubMed] [Google Scholar]
  68. Poulain B., Wadsworth J. D., Maisey E. A., Shone C. C., Melling J., Tauc L., Dolly J. O. Inhibition of transmitter release by botulinum neurotoxin A. Contribution of various fragments to the intoxication process. Eur J Biochem. 1989 Oct 20;185(1):197–203. doi: 10.1111/j.1432-1033.1989.tb15102.x. [DOI] [PubMed] [Google Scholar]
  69. Poulain B., Wadsworth J. D., Shone C. C., Mochida S., Lande S., Melling J., Dolly J. O., Tauc L. Multiple domains of botulinum neurotoxin contribute to its inhibition of transmitter release in Aplysia neurons. J Biol Chem. 1989 Dec 25;264(36):21928–21933. [PubMed] [Google Scholar]
  70. Rauch G., Gambale F., Montal M. Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence. Eur Biophys J. 1990;18(2):79–83. doi: 10.1007/BF00183266. [DOI] [PubMed] [Google Scholar]
  71. Rawlings N. D., Barrett A. J. Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol. 1995;248:105–120. doi: 10.1016/0076-6879(95)48009-9. [DOI] [PubMed] [Google Scholar]
  72. Roa M., Boquet P. Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis. J Biol Chem. 1985 Jun 10;260(11):6827–6835. [PubMed] [Google Scholar]
  73. Rossetto O., Schiavo G., Montecucco C., Poulain B., Deloye F., Lozzi L., Shone C. C. SNARE motif and neurotoxins. Nature. 1994 Dec 1;372(6505):415–416. doi: 10.1038/372415a0. [DOI] [PubMed] [Google Scholar]
  74. Sala C., Francolini M., Di Mauro D., Fumagalli G. Role of subunit composition in determining acetylcholine receptor degradation rates in rat myotubes. Neurosci Lett. 1998 Oct 30;256(1):1–4. doi: 10.1016/s0304-3940(98)00752-6. [DOI] [PubMed] [Google Scholar]
  75. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  76. Schiavo G., Boquet P., Dasgupta B. R., Montecucco C. Membrane interactions of tetanus and botulinum neurotoxins: a photolabelling study with photoactivatable phospholipids. J Physiol (Paris) 1990;84(2):180–187. [PubMed] [Google Scholar]
  77. Schiavo G., Demel R., Montecucco C. On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. Eur J Biochem. 1991 Aug 1;199(3):705–711. doi: 10.1111/j.1432-1033.1991.tb16174.x. [DOI] [PubMed] [Google Scholar]
  78. Schiavo G., Ferrari G., Rossetto O., Montecucco C. Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Lett. 1991 Sep 23;290(1-2):227–230. doi: 10.1016/0014-5793(91)81266-b. [DOI] [PubMed] [Google Scholar]
  79. Schiavo G., Montecucco C. Tetanus and botulism neurotoxins: isolation and assay. Methods Enzymol. 1995;248:643–652. doi: 10.1016/0076-6879(95)48041-2. [DOI] [PubMed] [Google Scholar]
  80. Schiavo G., Papini E., Genna G., Montecucco C. An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun. 1990 Dec;58(12):4136–4141. doi: 10.1128/iai.58.12.4136-4141.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992 Oct;11(10):3577–3583. doi: 10.1002/j.1460-2075.1992.tb05441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Schiavo G., Rossetto O., Catsicas S., Polverino de Laureto P., DasGupta B. R., Benfenati F., Montecucco C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem. 1993 Nov 15;268(32):23784–23787. [PubMed] [Google Scholar]
  83. Schiavo G., Santucci A., Dasgupta B. R., Mehta P. P., Jontes J., Benfenati F., Wilson M. C., Montecucco C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993 Nov 29;335(1):99–103. doi: 10.1016/0014-5793(93)80448-4. [DOI] [PubMed] [Google Scholar]
  84. Schiavo G., Shone C. C., Rossetto O., Alexander F. C., Montecucco C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem. 1993 Jun 5;268(16):11516–11519. [PubMed] [Google Scholar]
  85. Schmid M. F., Robinson J. P., DasGupta B. R. Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature. 1993 Aug 26;364(6440):827–830. doi: 10.1038/364827a0. [DOI] [PubMed] [Google Scholar]
  86. Shone C. C., Hambleton P., Melling J. A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem. 1987 Aug 17;167(1):175–180. doi: 10.1111/j.1432-1033.1987.tb13320.x. [DOI] [PubMed] [Google Scholar]
  87. Shone C. C., Hambleton P., Melling J. Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur J Biochem. 1985 Aug 15;151(1):75–82. doi: 10.1111/j.1432-1033.1985.tb09070.x. [DOI] [PubMed] [Google Scholar]
  88. Shone C. C., Quinn C. P., Wait R., Hallis B., Fooks S. G., Hambleton P. Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur J Biochem. 1993 Nov 1;217(3):965–971. doi: 10.1111/j.1432-1033.1993.tb18327.x. [DOI] [PubMed] [Google Scholar]
  89. Shone C. C., Roberts A. K. Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur J Biochem. 1994 Oct 1;225(1):263–270. doi: 10.1111/j.1432-1033.1994.00263.x. [DOI] [PubMed] [Google Scholar]
  90. Simpson L. L. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther. 1983 Jun;225(3):546–552. [PubMed] [Google Scholar]
  91. Simpson L. L., Coffield J. A., Bakry N. Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin. J Pharmacol Exp Ther. 1993 Nov;267(2):720–727. [PubMed] [Google Scholar]
  92. Simpson L. L., Coffield J. A., Bakry N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther. 1994 Apr;269(1):256–262. [PubMed] [Google Scholar]
  93. Simpson L. L. The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther. 1982 Jul;222(1):43–48. [PubMed] [Google Scholar]
  94. Staub G. C., Walton K. M., Schnaar R. L., Nichols T., Baichwal R., Sandberg K., Rogers T. B. Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line. J Neurosci. 1986 May;6(5):1443–1451. doi: 10.1523/JNEUROSCI.06-05-01443.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Stöcker W., Bode W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr Opin Struct Biol. 1995 Jun;5(3):383–390. doi: 10.1016/0959-440x(95)80101-4. [DOI] [PubMed] [Google Scholar]
  96. Sweeney S. T., Broadie K., Keane J., Niemann H., O'Kane C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 1995 Feb;14(2):341–351. doi: 10.1016/0896-6273(95)90290-2. [DOI] [PubMed] [Google Scholar]
  97. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  98. Takano K., Kirchner F., Gremmelt A., Matsuda M., Ozutsumi N., Sugimoto N. Blocking effects of tetanus toxin and its fragment [A-B] on the excitatory and inhibitory synapses of the spinal motoneurone of the cat. Toxicon. 1989;27(3):385–392. doi: 10.1016/0041-0101(89)90185-2. [DOI] [PubMed] [Google Scholar]
  99. Tonello F., Schiavo G., Montecucco C. Metal substitution of tetanus neurotoxin. Biochem J. 1997 Mar 1;322(Pt 2):507–510. doi: 10.1042/bj3220507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Umland T. C., Wingert L. M., Swaminathan S., Furey W. F., Schmidt J. J., Sax M. Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat Struct Biol. 1997 Oct;4(10):788–792. doi: 10.1038/nsb1097-788. [DOI] [PubMed] [Google Scholar]
  101. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  102. Van Heyningen W. E. Tetanus. Sci Am. 1968 Apr;218(4):69–passim. doi: 10.1038/scientificamerican0468-69. [DOI] [PubMed] [Google Scholar]
  103. Washbourne P., Pellizzari R., Baldini G., Wilson M. C., Montecucco C. Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett. 1997 Nov 24;418(1-2):1–5. doi: 10.1016/s0014-5793(97)01328-8. [DOI] [PubMed] [Google Scholar]
  104. Weller U., Dauzenroth M. E., Gansel M., Dreyer F. Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Neurosci Lett. 1991 Jan 14;122(1):132–134. doi: 10.1016/0304-3940(91)90210-k. [DOI] [PubMed] [Google Scholar]
  105. Weller U., Dauzenroth M. E., Meyer zu Heringdorf D., Habermann E. Chains and fragments of tetanus toxin. Separation, reassociation and pharmacological properties. Eur J Biochem. 1989 Jul 1;182(3):649–656. doi: 10.1111/j.1432-1033.1989.tb14874.x. [DOI] [PubMed] [Google Scholar]
  106. Weller U., Taylor C. F., Habermann E. Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon. 1986;24(11-12):1055–1063. doi: 10.1016/0041-0101(86)90132-7. [DOI] [PubMed] [Google Scholar]
  107. Wellhöner H. H., Hensel B., Seib U. C. Local tetanus in cats: neuropharmacokinetics of 125 I-tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol. 1973;276(3-4):375–386. doi: 10.1007/BF00499890. [DOI] [PubMed] [Google Scholar]
  108. Wellhöner H. H., Neville D. M., Jr Tetanus toxin binds with high affinity to neuroblastoma x glioma hybrid cells NG 108-15 and impairs their stimulated acetylcholine release. J Biol Chem. 1987 Dec 25;262(36):17374–17378. [PubMed] [Google Scholar]
  109. Wictome M., Rossetto O., Montecucco C., Shone C. C. Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett. 1996 May 20;386(2-3):133–136. doi: 10.1016/0014-5793(96)00431-0. [DOI] [PubMed] [Google Scholar]
  110. Williamson L. C., Halpern J. L., Montecucco C., Brown J. E., Neale E. A. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem. 1996 Mar 29;271(13):7694–7699. doi: 10.1074/jbc.271.13.7694. [DOI] [PubMed] [Google Scholar]
  111. Williamson L. C., Neale E. A. Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J Neurochem. 1994 Dec;63(6):2342–2345. doi: 10.1046/j.1471-4159.1994.63062342.x. [DOI] [PubMed] [Google Scholar]
  112. Wright J. F., Pernollet M., Reboul A., Aude C., Colomb M. G. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. J Biol Chem. 1992 May 5;267(13):9053–9058. [PubMed] [Google Scholar]
  113. Yamasaki S., Baumeister A., Binz T., Blasi J., Link E., Cornille F., Roques B., Fykse E. M., Südhof T. C., Jahn R. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem. 1994 Apr 29;269(17):12764–12772. [PubMed] [Google Scholar]
  114. Yamasaki S., Binz T., Hayashi T., Szabo E., Yamasaki N., Eklund M., Jahn R., Niemann H. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem Biophys Res Commun. 1994 Apr 29;200(2):829–835. doi: 10.1006/bbrc.1994.1526. [DOI] [PubMed] [Google Scholar]
  115. Yamasaki S., Hu Y., Binz T., Kalkuhl A., Kurazono H., Tamura T., Jahn R., Kandel E., Niemann H. Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4688–4692. doi: 10.1073/pnas.91.11.4688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Yavin E., Nathan A. Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. Eur J Biochem. 1986 Jan 15;154(2):403–407. doi: 10.1111/j.1432-1033.1986.tb09412.x. [DOI] [PubMed] [Google Scholar]
  117. de Paiva A., Ashton A. C., Foran P., Schiavo G., Montecucco C., Dolly J. O. Botulinum A like type B and tetanus toxins fulfils criteria for being a zinc-dependent protease. J Neurochem. 1993 Dec;61(6):2338–2341. doi: 10.1111/j.1471-4159.1993.tb07482.x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES