Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Feb 28;354(1382):497–506. doi: 10.1098/rstb.1999.0400

The role of retinal waves and synaptic normalization in retinogeniculate development.

S J Eglen 1
PMCID: PMC1692517  PMID: 10212494

Abstract

The prenatal development of the cat retinogeniculate pathway is thought to involve activity-dependent mechanisms driven by spontaneous waves of retinal activity. The role of these waves upon the segregation of the dorsal lateral geniculate nucleus (LGN) into two eye-specific layers and the development of retinotopic mappings have previously been investigated in a computer model. Using this model, we examine three aspects of retinogeniculate development. First, the mapping of visual space across the whole network into projection columns is shown to be similar to the mapping found in the cat. Second, the simplicity of the model allows us to explore how different forms of synaptic normalization affect development. In comparison to most previous models of ocular dominance, we find that subtractive postsynaptic normalization is redundant and divisive presynaptic normalization is sufficient for normal development. Third, the model predicts that the more often one eye generates waves relative to the other eye, the more LGN units will monocularly respond to the more active eye. In the limit when one eye does not generate any waves, that eye totally disconnects from the LGN allowing the non-deprived eye to innervate all of the LGN. Thus, as well as accounting for normal retinogeniculate development, the model also predicts development under abnormal conditions which can be experimentally tested.

Full Text

The Full Text of this article is available as a PDF (241.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng H. J., Nakamoto M., Bergemann A. D., Flanagan J. G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell. 1995 Aug 11;82(3):371–381. doi: 10.1016/0092-8674(95)90426-3. [DOI] [PubMed] [Google Scholar]
  2. Feller M. B., Butts D. A., Aaron H. L., Rokhsar D. S., Shatz C. J. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron. 1997 Aug;19(2):293–306. doi: 10.1016/s0896-6273(00)80940-x. [DOI] [PubMed] [Google Scholar]
  3. Feller M. B., Wellis D. P., Stellwagen D., Werblin F. S., Shatz C. J. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science. 1996 May 24;272(5265):1182–1187. doi: 10.1126/science.272.5265.1182. [DOI] [PubMed] [Google Scholar]
  4. Galli L., Maffei L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science. 1988 Oct 7;242(4875):90–91. doi: 10.1126/science.3175637. [DOI] [PubMed] [Google Scholar]
  5. Garraghty P. E., Shatz C. J., Sur M. Prenatal disruption of binocular interactions creates novel lamination in the cat's lateral geniculate nucleus. Vis Neurosci. 1988;1(1):93–102. doi: 10.1017/s0952523800001048. [DOI] [PubMed] [Google Scholar]
  6. Goodman C. S., Shatz C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell. 1993 Jan;72 (Suppl):77–98. doi: 10.1016/s0092-8674(05)80030-3. [DOI] [PubMed] [Google Scholar]
  7. Guillery R. W., LaMantia A. S., Robson J. A., Huang K. The influence of retinal afferents upon the development of layers in the dorsal lateral geniculate nucleus of mustelids. J Neurosci. 1985 May;5(5):1370–1379. doi: 10.1523/JNEUROSCI.05-05-01370.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hahm J. O., Langdon R. B., Sur M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature. 1991 Jun 13;351(6327):568–570. doi: 10.1038/351568a0. [DOI] [PubMed] [Google Scholar]
  9. Hayes W. P., Meyer R. L. Retinotopically inappropriate synapses of subnormal density formed by surgically misdirected optic fibers in goldfish tectum. Brain Res. 1988 Feb 1;466(2):304–312. doi: 10.1016/0165-3806(88)90058-2. [DOI] [PubMed] [Google Scholar]
  10. Lee D., Malpeli J. G. Global form and singularity: modeling the blind spot's role in lateral geniculate morphogenesis. Science. 1994 Mar 4;263(5151):1292–1294. doi: 10.1126/science.8122115. [DOI] [PubMed] [Google Scholar]
  11. Maffei L., Galli-Resta L. Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2861–2864. doi: 10.1073/pnas.87.7.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meister M., Wong R. O., Baylor D. A., Shatz C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 1991 May 17;252(5008):939–943. doi: 10.1126/science.2035024. [DOI] [PubMed] [Google Scholar]
  13. Miller K. D., Keller J. B., Stryker M. P. Ocular dominance column development: analysis and simulation. Science. 1989 Aug 11;245(4918):605–615. doi: 10.1126/science.2762813. [DOI] [PubMed] [Google Scholar]
  14. Morgan J., Thompson I. D. The segregation of ON- and OFF-center responses in the lateral geniculate nucleus of normal and monocularly enucleated ferrets. Vis Neurosci. 1993 Mar-Apr;10(2):303–311. doi: 10.1017/s0952523800003709. [DOI] [PubMed] [Google Scholar]
  15. Norden J. J., Constantine-Paton M. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number. J Comp Neurol. 1994 Oct 15;348(3):461–479. doi: 10.1002/cne.903480310. [DOI] [PubMed] [Google Scholar]
  16. Penn A. A., Riquelme P. A., Feller M. B., Shatz C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science. 1998 Mar 27;279(5359):2108–2112. doi: 10.1126/science.279.5359.2108. [DOI] [PubMed] [Google Scholar]
  17. Sanderson K. J. The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol. 1971 Sep;143(1):101–108. doi: 10.1002/cne.901430107. [DOI] [PubMed] [Google Scholar]
  18. Shatz C. J., Kirkwood P. A. Prenatal development of functional connections in the cat's retinogeniculate pathway. J Neurosci. 1984 May;4(5):1378–1397. doi: 10.1523/JNEUROSCI.04-05-01378.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shatz C. J., Stryker M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science. 1988 Oct 7;242(4875):87–89. doi: 10.1126/science.3175636. [DOI] [PubMed] [Google Scholar]
  20. Shatz C. J. The prenatal development of the cat's retinogeniculate pathway. J Neurosci. 1983 Mar;3(3):482–499. doi: 10.1523/JNEUROSCI.03-03-00482.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stryker M. P., Zahs K. R. On and off sublaminae in the lateral geniculate nucleus of the ferret. J Neurosci. 1983 Oct;3(10):1943–1951. doi: 10.1523/JNEUROSCI.03-10-01943.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swindale N. V. The development of topography in the visual cortex: a review of models. Network. 1996 May;7(2):161–247. doi: 10.1088/0954-898X/7/2/002. [DOI] [PubMed] [Google Scholar]
  23. Weber A. J., Kalil R. E. Development of corticogeniculate synapses in the cat. J Comp Neurol. 1987 Oct 8;264(2):171–192. doi: 10.1002/cne.902640204. [DOI] [PubMed] [Google Scholar]
  24. Willshaw D. J., von der Malsburg C. A marker induction mechanism for the establishment of ordered neural mappings: its application to the retinotectal problem. Philos Trans R Soc Lond B Biol Sci. 1979 Nov 1;287(1021):203–243. doi: 10.1098/rstb.1979.0056. [DOI] [PubMed] [Google Scholar]
  25. Willshaw D. J., von der Malsburg C. How patterned neural connections can be set up by self-organization. Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):431–445. doi: 10.1098/rspb.1976.0087. [DOI] [PubMed] [Google Scholar]
  26. Wong R. O., Meister M., Shatz C. J. Transient period of correlated bursting activity during development of the mammalian retina. Neuron. 1993 Nov;11(5):923–938. doi: 10.1016/0896-6273(93)90122-8. [DOI] [PubMed] [Google Scholar]
  27. Wong R. O., Oakley D. M. Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron. 1996 Jun;16(6):1087–1095. doi: 10.1016/s0896-6273(00)80135-x. [DOI] [PubMed] [Google Scholar]
  28. von der Malsburg C. Development of ocularity domains and growth behaviour of axon terminals. Biol Cybern. 1979 Feb 2;32(1):49–62. doi: 10.1007/BF00337452. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES