Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 May 29;354(1385):877–894. doi: 10.1098/rstb.1999.0440

Model-based development of neuroprosthesis for paraplegic patients.

R Riener 1
PMCID: PMC1692587  PMID: 10382222

Abstract

In paraplegic patients with upper motor neuron lesions the signal path from the central nervous system to the muscles is interrupted. Functional electrical stimulation applied to the lower motor neurons can replace the lacking signals. A so-called neuroprosthesis may be used to restore motor function in paraplegic patients on the basis of functional electrical stimulation. However, the control of multiple joints is difficult due to the complexity, nonlinearity, and time-variance of the system involved. Furthermore, effects such as muscle fatigue, spasticity, and limited force in the stimulated muscle further complicate the control task. Mathematical models of the human musculoskeletal system can support the development of neuroprosthesis. In this article a detailed overview of the existing work in the literature is given and two examples developed by the author are presented that give an insight into model-based development of neuroprosthesis for paraplegic patients. It is shown that modelling the musculoskeletal system can provide better understanding of muscular force production and movement coordination principles. Models can also be used to design and test stimulation patterns and feedback control strategies. Additionally, model components can be implemented in a controller to improve control performance. Eventually, the use of musculoskeletal models for neuroprosthesis design may help to avoid internal disturbances such as fatigue and optimize muscular force output. Furthermore, better controller quality can be obtained than in previous empirical approaches. In addition, the number of experimental tests to be performed with human subjects can be reduced. It is concluded that mathematical models play an increasing role in the development of reliable closed-loop controlled, lower extremity neuroprostheses.

Full Text

The Full Text of this article is available as a PDF (412.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas J. J., Chizeck H. J. Neural network control of functional neuromuscular stimulation systems: computer simulation studies. IEEE Trans Biomed Eng. 1995 Nov;42(11):1117–1127. doi: 10.1109/10.469379. [DOI] [PubMed] [Google Scholar]
  2. Bajd T., Bowman B. Testing and modelling of spasticity. J Biomed Eng. 1982 Apr;4(2):90–96. doi: 10.1016/0141-5425(82)90067-x. [DOI] [PubMed] [Google Scholar]
  3. Bajd T., Kralj A., Turk R. Standing-up of a healthy subject and a paraplegic patient. J Biomech. 1982;15(1):1–10. doi: 10.1016/0021-9290(82)90029-x. [DOI] [PubMed] [Google Scholar]
  4. Bajd T., Trnkoczy A. Attempts to optimise functional electrical stimulation of antagonistic muscles by mathematical modelling. J Biomech. 1979;12(12):921–928. doi: 10.1016/0021-9290(79)90060-5. [DOI] [PubMed] [Google Scholar]
  5. Bernotas L. A., Crago P. E., Chizeck H. J. A discrete-time model of electrically stimulated muscle. IEEE Trans Biomed Eng. 1986 Sep;33(9):829–838. doi: 10.1109/TBME.1986.325776. [DOI] [PubMed] [Google Scholar]
  6. Bernotas L. A., Crago P. E., Chizeck H. J. Adaptive control of electrically stimulated muscle. IEEE Trans Biomed Eng. 1987 Feb;34(2):140–147. doi: 10.1109/tbme.1987.326038. [DOI] [PubMed] [Google Scholar]
  7. Bobet J., Stein R. B. A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Trans Biomed Eng. 1998 Aug;45(8):1010–1016. doi: 10.1109/10.704869. [DOI] [PubMed] [Google Scholar]
  8. Bobet J., Stein R. B., Oğuztöreli M. N. A linear time-varying model of force generation in skeletal muscle. IEEE Trans Biomed Eng. 1993 Oct;40(10):1000–1006. doi: 10.1109/10.247798. [DOI] [PubMed] [Google Scholar]
  9. Brindley G. S., Polkey C. E., Rushton D. N. Electrical splinting of the knee in paraplegia. Paraplegia. 1979 Feb;16(4):428–437. doi: 10.1038/sc.1978.78. [DOI] [PubMed] [Google Scholar]
  10. Chao E. Y., Rim K. Application of optimization principles in determining the applied moments in human leg joints during gait. J Biomech. 1973 Sep;6(5):497–510. doi: 10.1016/0021-9290(73)90008-0. [DOI] [PubMed] [Google Scholar]
  11. Chia T. L., Chow P. C., Chizeck H. J. Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans Biomed Eng. 1991 May;38(5):429–442. doi: 10.1109/10.81562. [DOI] [PubMed] [Google Scholar]
  12. Chizeck H. J., Crago P. E., Kofman L. S. Robust closed-loop control of isometric muscle force using pulsewidth modulation. IEEE Trans Biomed Eng. 1988 Jul;35(7):510–517. doi: 10.1109/10.4579. [DOI] [PubMed] [Google Scholar]
  13. Chizeck H. J., Lan N., Palmieri L. S., Crago P. E. Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. IEEE Trans Biomed Eng. 1991 Dec;38(12):1224–1234. doi: 10.1109/10.137288. [DOI] [PubMed] [Google Scholar]
  14. Chou L. S., Song S. M., Draganich L. F. Predicting the kinematics and kinetics of gait based on the optimum trajectory of the swing limb. J Biomech. 1995 Apr;28(4):377–385. doi: 10.1016/0021-9290(94)00083-g. [DOI] [PubMed] [Google Scholar]
  15. Cooper E. B., Jr, Bunch W. H., Campa J. F. Effects of chronic human neuromuscular stimulation. Surg Forum. 1973;24:477–479. [PubMed] [Google Scholar]
  16. Crago P. E., Mortimer J. T., Peckham P. H. Closed-loop control of force during electrical stimulation of muscle. IEEE Trans Biomed Eng. 1980 Jun;27(6):306–312. doi: 10.1109/TBME.1980.326738. [DOI] [PubMed] [Google Scholar]
  17. Crago P. E., Peckham P. H., Thrope G. B. Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng. 1980 Dec;27(12):679–684. doi: 10.1109/TBME.1980.326592. [DOI] [PubMed] [Google Scholar]
  18. Crochetiere W. J., Vodovnik L., Reswick J. B. Electrical stimulation of skeletal muscle--a study of muscle as an actuator. Med Biol Eng. 1967 Mar;5(2):111–125. doi: 10.1007/BF02474499. [DOI] [PubMed] [Google Scholar]
  19. D'Amico M., Ferrigno G. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure. Med Biol Eng Comput. 1990 Sep;28(5):407–415. doi: 10.1007/BF02441963. [DOI] [PubMed] [Google Scholar]
  20. Delp S. L., Loan J. P., Hoy M. G., Zajac F. E., Topp E. L., Rosen J. M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990 Aug;37(8):757–767. doi: 10.1109/10.102791. [DOI] [PubMed] [Google Scholar]
  21. Dietz V., Quintern J., Berger W. Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain. 1981 Sep;104(3):431–449. doi: 10.1093/brain/104.3.431. [DOI] [PubMed] [Google Scholar]
  22. Donaldson N. N., Gollee H., Hunt K. J., Jarvis J. C., Kwende M. K. A radial basis function model of muscle stimulated with irregular inter-pulse intervals. Med Eng Phys. 1995 Sep;17(6):431–441. doi: 10.1016/1350-4533(94)00013-y. [DOI] [PubMed] [Google Scholar]
  23. Donaldson N. de N., Yu C. H. FES standing: control by handle reactions of leg muscle stimulation (CHRELMS). IEEE Trans Rehabil Eng. 1996 Dec;4(4):280–284. doi: 10.1109/86.547928. [DOI] [PubMed] [Google Scholar]
  24. Dorgan S. J., O'Malley M. J. A mathematical model for skeletal muscle activated by N-let pulse trains. IEEE Trans Rehabil Eng. 1998 Sep;6(3):286–299. doi: 10.1109/86.712226. [DOI] [PubMed] [Google Scholar]
  25. Durfee W. K. Control of standing and gait using electrical stimulation: influence of muscle model complexity on control strategy. Prog Brain Res. 1993;97:369–381. doi: 10.1016/s0079-6123(08)62296-7. [DOI] [PubMed] [Google Scholar]
  26. Durfee W. K., MacLean K. E. Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans Biomed Eng. 1989 Jul;36(7):654–667. doi: 10.1109/10.32097. [DOI] [PubMed] [Google Scholar]
  27. FURMAN S., SCHWEDEL J. B. An intracardiac pacemaker for Stokes-Adams seizures. N Engl J Med. 1959 Nov 5;261:943–948. doi: 10.1056/NEJM195911052611904. [DOI] [PubMed] [Google Scholar]
  28. Ferrigno G., Pedotti A. ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng. 1985 Nov;32(11):943–950. doi: 10.1109/TBME.1985.325627. [DOI] [PubMed] [Google Scholar]
  29. Frigo C, Rabuffetti M. Multifactorial estimation of hip and knee joint centres for clinical application of gait analysis. Gait Posture. 1998 Oct 1;8(2):91–102. doi: 10.1016/s0966-6362(98)00031-9. [DOI] [PubMed] [Google Scholar]
  30. Giat Y., Mizrahi J., Levy M. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES. IEEE Trans Biomed Eng. 1993 Jul;40(7):664–674. doi: 10.1109/10.237696. [DOI] [PubMed] [Google Scholar]
  31. Grimby G., Broberg C., Krotkiewska I., Krotkiewski M. Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med. 1976;8(1):37–42. [PubMed] [Google Scholar]
  32. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  33. Hannaford B. A nonlinear model of the phasic dynamics of muscle activation. IEEE Trans Biomed Eng. 1990 Nov;37(11):1067–1075. doi: 10.1109/10.61032. [DOI] [PubMed] [Google Scholar]
  34. Hatze H. A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J Biomech. 1981;14(3):135–142. doi: 10.1016/0021-9290(81)90019-1. [DOI] [PubMed] [Google Scholar]
  35. Hatze H. A myocybernetic control model of skeletal muscle. Biol Cybern. 1977 Jan 20;25(2):103–119. doi: 10.1007/BF00337268. [DOI] [PubMed] [Google Scholar]
  36. Hunt K. J., Munih M., Donaldson N. N., Barr F. M. Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans Biomed Eng. 1998 Aug;45(8):998–1009. doi: 10.1109/10.704868. [DOI] [PubMed] [Google Scholar]
  37. Hunter I. W., Korenberg M. J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern. 1986;55(2-3):135–144. doi: 10.1007/BF00341929. [DOI] [PubMed] [Google Scholar]
  38. Jaeger R. J. Design and simulation of closed-loop electrical stimulation orthoses for restoration of quiet standing in paraplegia. J Biomech. 1986;19(10):825–835. doi: 10.1016/0021-9290(86)90133-8. [DOI] [PubMed] [Google Scholar]
  39. Jaeger R. J., Yarkony G. M., Smith R. M. Standing the spinal cord injured patient by electrical stimulation: refinement of a protocol for clinical use. IEEE Trans Biomed Eng. 1989 Jul;36(7):720–728. doi: 10.1109/10.32104. [DOI] [PubMed] [Google Scholar]
  40. Kearney R. E., Stein R. B., Parameswaran L. Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans Biomed Eng. 1997 Jun;44(6):493–504. doi: 10.1109/10.581944. [DOI] [PubMed] [Google Scholar]
  41. Khang G., Zajac F. E. Paraplegic standing controlled by functional neuromuscular stimulation: Part II--Computer simulation studies. IEEE Trans Biomed Eng. 1989 Sep;36(9):885–894. doi: 10.1109/10.35297. [DOI] [PubMed] [Google Scholar]
  42. Kowalk D. L., Duncan J. A., Vaughan C. L. Abduction-adduction moments at the knee during stair ascent and descent. J Biomech. 1996 Mar;29(3):383–388. doi: 10.1016/0021-9290(95)00038-0. [DOI] [PubMed] [Google Scholar]
  43. Kralj A., Bajd T., Turk R. Electrical stimulation providing functional use of paraplegic patient muscles. Med Prog Technol. 1980 Apr;7(1):3–9. [PubMed] [Google Scholar]
  44. Kralj A., Bajd T., Turk R., Krajnik J., Benko H. Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. J Rehabil R D. 1983 Jul;20(1):3–20. [PubMed] [Google Scholar]
  45. LIBERSON W. T., HOLMQUEST H. J., SCOT D., DOW M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961 Feb;42:101–105. [PubMed] [Google Scholar]
  46. Mansour J. M., Audu M. L. The passive elastic moment at the knee and its influence on human gait. J Biomech. 1986;19(5):369–373. doi: 10.1016/0021-9290(86)90013-8. [DOI] [PubMed] [Google Scholar]
  47. Marsolais E. B., Kobetic R. Functional electrical stimulation for walking in paraplegia. J Bone Joint Surg Am. 1987 Jun;69(5):728–733. [PubMed] [Google Scholar]
  48. Matjacić Z., Bajd T. Arm-free paraplegic standing--Part I: Control model synthesis and simulation. IEEE Trans Rehabil Eng. 1998 Jun;6(2):125–138. doi: 10.1109/86.681178. [DOI] [PubMed] [Google Scholar]
  49. McClellan A. D., Jang W. Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling. J Neurophysiol. 1993 Dec;70(6):2442–2454. doi: 10.1152/jn.1993.70.6.2442. [DOI] [PubMed] [Google Scholar]
  50. McNeal D. R. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng. 1976 Jul;23(4):329–337. doi: 10.1109/tbme.1976.324593. [DOI] [PubMed] [Google Scholar]
  51. Mulder A. J., Veltink P. H., Boom H. B. On/off control in FES-induced standing up: a model study and experiments. Med Biol Eng Comput. 1992 Mar;30(2):205–212. doi: 10.1007/BF02446131. [DOI] [PubMed] [Google Scholar]
  52. Munih M., Kralj A. Modelling muscle activity in standing with considerations for bone safety. J Biomech. 1997 Jan;30(1):49–56. doi: 10.1016/s0021-9290(96)00095-4. [DOI] [PubMed] [Google Scholar]
  53. Pandy M. G., Garner B. A., Anderson F. C. Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J Biomech Eng. 1995 Feb;117(1):15–26. doi: 10.1115/1.2792265. [DOI] [PubMed] [Google Scholar]
  54. Peckham P. H., Thrope G., Woloszko J., Habasevich R., Scherer M., Kantor C. Technology transfer of neuroprosthetic devices. J Rehabil Res Dev. 1996 Apr;33(2):173–183. [PubMed] [Google Scholar]
  55. Popovic D., Gordon T., Rafuse V. F., Prochazka A. Properties of implanted electrodes for functional electrical stimulation. Ann Biomed Eng. 1991;19(3):303–316. doi: 10.1007/BF02584305. [DOI] [PubMed] [Google Scholar]
  56. Quintern J., Riener R., Rupprecht S. Comparison of simulation and experiments of different closed-loop strategies for functional electrical stimulation: experiments in paraplegics. Artif Organs. 1997 Mar;21(3):232–235. doi: 10.1111/j.1525-1594.1997.tb04656.x. [DOI] [PubMed] [Google Scholar]
  57. Rattay F. Modeling the excitation of fibers under surface electrodes. IEEE Trans Biomed Eng. 1988 Mar;35(3):199–202. doi: 10.1109/10.1362. [DOI] [PubMed] [Google Scholar]
  58. Riener R., Fuhr T. Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans Rehabil Eng. 1998 Jun;6(2):113–124. doi: 10.1109/86.681177. [DOI] [PubMed] [Google Scholar]
  59. Riener R., Quintern J., Schmidt G. Biomechanical model of the human knee evaluated by neuromuscular stimulation. J Biomech. 1996 Sep;29(9):1157–1167. doi: 10.1016/0021-9290(96)00012-7. [DOI] [PubMed] [Google Scholar]
  60. Riener R., Straube A. Inverse dynamics as a tool for motion analysis: arm tracking movements in cerebellar patients. J Neurosci Methods. 1997 Mar;72(1):87–96. doi: 10.1016/s0165-0270(96)02168-1. [DOI] [PubMed] [Google Scholar]
  61. Thrope G. B., Peckham P. H., Crago P. E. A computer-controlled multichannel stimulation system for laboratory use in functional neuromuscular stimulation. IEEE Trans Biomed Eng. 1985 Jun;32(6):363–370. doi: 10.1109/TBME.1985.325461. [DOI] [PubMed] [Google Scholar]
  62. Veltink P. H., Chizeck H. J., Crago P. E., el-Bialy A. Nonlinear joint angle control for artificially stimulated muscle. IEEE Trans Biomed Eng. 1992 Apr;39(4):368–380. doi: 10.1109/10.126609. [DOI] [PubMed] [Google Scholar]
  63. Veltink P. H., Franken H. M., Van Alsté J. A., Boom H. B. Modelling the optimal control of cyclical leg movements induced by functional electrical stimulation. Int J Artif Organs. 1992 Dec;15(12):746–755. [PubMed] [Google Scholar]
  64. Vodovnik L., Bowman B. R., Bajd T. Dynamics of spastic knee joint. Med Biol Eng Comput. 1984 Jan;22(1):63–69. doi: 10.1007/BF02443747. [DOI] [PubMed] [Google Scholar]
  65. Walker J. B. Modulation of spasticity: prolonged suppression of a spinal reflex by electrical stimulation. Science. 1982 Apr 9;216(4542):203–204. doi: 10.1126/science.7063882. [DOI] [PubMed] [Google Scholar]
  66. Waters R. L., McNeal D., Perry J. Experimental correction of footdrop by electrical stimulation of the peroneal nerve. J Bone Joint Surg Am. 1975 Dec;57(8):1047–1054. [PubMed] [Google Scholar]
  67. Wilhere G. F., Crago P. E., Chizeck H. J. Design and evaluation of a digital closed-loop controller for the regulation of muscle force by recruitment modulation. IEEE Trans Biomed Eng. 1985 Sep;32(9):668–676. doi: 10.1109/TBME.1985.325584. [DOI] [PubMed] [Google Scholar]
  68. Winters J. M. An improved muscle-reflex actuator for use in large-scale neuro-musculoskeletal models. Ann Biomed Eng. 1995 Jul-Aug;23(4):359–374. doi: 10.1007/BF02584437. [DOI] [PubMed] [Google Scholar]
  69. Yamaguchi G. T., Zajac F. E. Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study. IEEE Trans Biomed Eng. 1990 Sep;37(9):886–902. doi: 10.1109/10.58599. [DOI] [PubMed] [Google Scholar]
  70. Yoshida K., Horch K. Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation. IEEE Trans Biomed Eng. 1996 Feb;43(2):167–176. doi: 10.1109/10.481986. [DOI] [PubMed] [Google Scholar]
  71. Young R. R. Spasticity: a review. Neurology. 1994 Nov;44(11 Suppl 9):S12–S20. [PubMed] [Google Scholar]
  72. Zajac F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17(4):359–411. [PubMed] [Google Scholar]
  73. van Zandwijk J. P., Bobbert M. F., Baan G. C., Huijing P. A. From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces. Biol Cybern. 1996 Nov;75(5):409–417. doi: 10.1007/s004220050306. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES