Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jun 29;354(1386):1061–1067. doi: 10.1098/rstb.1999.0459

Analysis of the subcellular localization of huntingtin with a set of rabbit polyclonal antibodies in cultured mammalian cells of neuronal origin: comparison with the distribution of huntingtin in Huntington's disease autopsy brain.

J C Dorsman 1, M A Smoor 1, M L Maat-Schieman 1, M Bout 1, S Siesling 1, S G van Duinen 1, J J Verschuuren 1, J T den Dunnen 1, R A Roos 1, G J van Ommen 1
PMCID: PMC1692596  PMID: 10434306

Abstract

Huntington's disease (HD) is a neurodegenerative disorder with a midlife onset. The disease is caused by expansion of a CAG (glutamine) repeat within the coding region of the HD gene. The molecular mechanism by which the mutated protein causes this disease is still unclear. To study the protein we have generated a set of rabbit polyclonal antibodies raised against different segments of the N-terminal, central and C-terminal parts of the protein. The polyclonal antibodies were affinity purified and characterized in ELISA and Western blotting experiments. All antibodies can react with mouse and human proteins. The specificity of these antibodies is underscored by their recognition of huntingtin with different repeat sizes in extracts prepared from patient-derived lymphoblasts. The antibodies were used in immunofluorescence experiments to study the subcellular localization of huntingtin in mouse neuroblastoma NIE-115 cells. The results indicate that most huntingtin is present in the cytoplasm, whereas a minor fraction is present in the nucleus. On differentiation of the NIE-115 cells in vitro, the subcellular distribution of huntingtin does not change significantly. These results suggest that full-length huntingtin with a normal repeat length can be detected in the nucleus of cycling and non-cycling cultured mammalian cells of neuronal origin. However, in HD autopsy brain the huntingtin-containing neuronal intranuclear inclusions can be detected only with antibodies raised against the N-terminus of huntingtin. Thus several forms of huntingtin display the propensity for nuclear localization, possibly with different functional consequences.

Full Text

The Full Text of this article is available as a PDF (168.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Rooij K. E., De Koning Gans P. A., Skraastad M. I., Belfroid R. D., Vegter-Van Der Vlis M., Roos R. A., Bakker E., Van Ommen G. J., Den Dunnen J. T., Losekoot M. Dynamic mutation in Dutch Huntington's disease patients: increased paternal repeat instability extending to within the normal size range. J Med Genet. 1993 Dec;30(12):996–1002. doi: 10.1136/jmg.30.12.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Rooij K. E., Dorsman J. C., Smoor M. A., Den Dunnen J. T., Van Ommen G. J. Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum Mol Genet. 1996 Aug;5(8):1093–1099. doi: 10.1093/hmg/5.8.1093. [DOI] [PubMed] [Google Scholar]
  3. DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997 Sep 26;277(5334):1990–1993. doi: 10.1126/science.277.5334.1990. [DOI] [PubMed] [Google Scholar]
  4. Goldberg Y. P., Nicholson D. W., Rasper D. M., Kalchman M. A., Koide H. B., Graham R. K., Bromm M., Kazemi-Esfarjani P., Thornberry N. A., Vaillancourt J. P. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet. 1996 Aug;13(4):442–449. doi: 10.1038/ng0896-442. [DOI] [PubMed] [Google Scholar]
  5. Hoogeveen A. T., Willemsen R., Meyer N., de Rooij K. E., Roos R. A., van Ommen G. J., Galjaard H. Characterization and localization of the Huntington disease gene product. Hum Mol Genet. 1993 Dec;2(12):2069–2073. doi: 10.1093/hmg/2.12.2069. [DOI] [PubMed] [Google Scholar]
  6. Hübner S., Xiao C. Y., Jans D. A. The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J Biol Chem. 1997 Jul 4;272(27):17191–17195. doi: 10.1074/jbc.272.27.17191. [DOI] [PubMed] [Google Scholar]
  7. Jou Y. S., Myers R. M. Evidence from antibody studies that the CAG repeat in the Huntington disease gene is expressed in the protein. Hum Mol Genet. 1995 Mar;4(3):465–469. doi: 10.1093/hmg/4.3.465. [DOI] [PubMed] [Google Scholar]
  8. Kalchman M. A., Koide H. B., McCutcheon K., Graham R. K., Nichol K., Nishiyama K., Kazemi-Esfarjani P., Lynn F. C., Wellington C., Metzler M. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet. 1997 May;16(1):44–53. doi: 10.1038/ng0597-44. [DOI] [PubMed] [Google Scholar]
  9. Kimhi Y., Palfrey C., Spector I., Barak Y., Littauer U. Z. Maturation of neuroblastoma cells in the presence of dimethylsulfoxide. Proc Natl Acad Sci U S A. 1976 Feb;73(2):462–466. doi: 10.1073/pnas.73.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kranenburg O., Scharnhorst V., Van der Eb A. J., Zantema A. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. J Cell Biol. 1995 Oct;131(1):227–234. doi: 10.1083/jcb.131.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li X. J., Li S. H., Sharp A. H., Nucifora F. C., Jr, Schilling G., Lanahan A., Worley P., Snyder S. H., Ross C. A. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 1995 Nov 23;378(6555):398–402. doi: 10.1038/378398a0. [DOI] [PubMed] [Google Scholar]
  12. Lunkes A., Mandel J. L. A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum Mol Genet. 1998 Sep;7(9):1355–1361. doi: 10.1093/hmg/7.9.1355. [DOI] [PubMed] [Google Scholar]
  13. Maat-Schieman M. L., Dorsman J. C., Smoor M. A., Siesling S., Van Duinen S. G., Verschuuren J. J., den Dunnen J. T., Van Ommen G. J., Roos R. A. Distribution of inclusions in neuronal nuclei and dystrophic neurites in Huntington disease brain. J Neuropathol Exp Neurol. 1999 Feb;58(2):129–137. doi: 10.1097/00005072-199902000-00003. [DOI] [PubMed] [Google Scholar]
  14. Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C., Lawton M., Trottier Y., Lehrach H., Davies S. W. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996 Nov 1;87(3):493–506. doi: 10.1016/s0092-8674(00)81369-0. [DOI] [PubMed] [Google Scholar]
  15. Paulson H. L., Perez M. K., Trottier Y., Trojanowski J. Q., Subramony S. H., Das S. S., Vig P., Mandel J. L., Fischbeck K. H., Pittman R. N. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997 Aug;19(2):333–344. doi: 10.1016/s0896-6273(00)80943-5. [DOI] [PubMed] [Google Scholar]
  16. Read A. P. Huntington's disease: testing the test. Nat Genet. 1993 Aug;4(4):329–330. doi: 10.1038/ng0893-329. [DOI] [PubMed] [Google Scholar]
  17. Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G. P., Davies S. W., Lehrach H., Wanker E. E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997 Aug 8;90(3):549–558. doi: 10.1016/s0092-8674(00)80514-0. [DOI] [PubMed] [Google Scholar]
  18. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  19. Wanker E. E., Rovira C., Scherzinger E., Hasenbank R., Wälter S., Tait D., Colicelli J., Lehrach H. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Mol Genet. 1997 Mar;6(3):487–495. doi: 10.1093/hmg/6.3.487. [DOI] [PubMed] [Google Scholar]
  20. White J. K., Auerbach W., Duyao M. P., Vonsattel J. P., Gusella J. F., Joyner A. L., MacDonald M. E. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet. 1997 Dec;17(4):404–410. doi: 10.1038/ng1297-404. [DOI] [PubMed] [Google Scholar]
  21. Xiao C. Y., Hübner S., Jans D. A. SV40 large tumor antigen nuclear import is regulated by the double-stranded DNA-dependent protein kinase site (serine 120) flanking the nuclear localization sequence. J Biol Chem. 1997 Aug 29;272(35):22191–22198. doi: 10.1074/jbc.272.35.22191. [DOI] [PubMed] [Google Scholar]
  22. de Laat S. W., van der Saag P. T. The plasma membrane as a regulatory site in growth and differentiation of neuroblastoma cells. Int Rev Cytol. 1982;74:1–54. doi: 10.1016/s0074-7696(08)61168-7. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES