Abstract
Different aspects of expanded polyglutamine tracts and of their pathogenetic role are taken into consideration here. (i) The (CAG)n length of wild-type alleles of the Huntington disease gene was analysed in instability-prone tumour tissue from colon cancer patients to test whether the process leading to the elongation of alleles towards the expansion range involves single-unit stepwise mutations or larger jumps. The analysis showed that length changes of a single unit had a relatively low frequency. (ii) The observation of an expanded spinocerebellar ataxia (SCA)1 allele with an unusual pattern of multiple CAT interruptions showed that cryptic sequence variations are critical not only for sequence length stability but also for the expression of the disease phenotype. (iii) Small expansions of the (CAG)n sequence at the CACNA1A gene have been reported as causing SCA6. The analysis of families with SCA6 and episodic ataxia type 2 showed that these phenotypes are, in fact, expressions of the same disorder caused either by point mutations or by small (CAG)n expansions. A gain of function has been hypothesized for all proteins containing an expanded polyglutamine stretch, including the alpha 1A subunit of the voltage-gated calcium channel type P/Q coded by the CACNA1A gene. Because point mutations at the same gene with similar phenotypic consequences are highly unlikely to have this effect, an alternative common pathogenetic mechanism for all these mutations, including small expansions, can be hypothesized.
Full Text
The Full Text of this article is available as a PDF (144.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brinkmann B., Klintschar M., Neuhuber F., Hühne J., Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998 Jun;62(6):1408–1415. doi: 10.1086/301869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong S. S., McCall A. E., Cota J., Subramony S. H., Orr H. T., Hughes M. R., Zoghbi H. Y. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1995 Jul;10(3):344–350. doi: 10.1038/ng0795-344. [DOI] [PubMed] [Google Scholar]
- Chung M. Y., Ranum L. P., Duvick L. A., Servadio A., Zoghbi H. Y., Orr H. T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet. 1993 Nov;5(3):254–258. doi: 10.1038/ng1193-254. [DOI] [PubMed] [Google Scholar]
- Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L., Bates G. P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997 Aug 8;90(3):537–548. doi: 10.1016/s0092-8674(00)80513-9. [DOI] [PubMed] [Google Scholar]
- Di Rienzo A., Donnelly P., Toomajian C., Sisk B., Hill A., Petzl-Erler M. L., Haines G. K., Barch D. H. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics. 1998 Mar;148(3):1269–1284. doi: 10.1093/genetics/148.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997 Sep 26;277(5334):1990–1993. doi: 10.1126/science.277.5334.1990. [DOI] [PubMed] [Google Scholar]
- Dubourg O., Dürr A., Cancel G., Stevanin G., Chneiweiss H., Penet C., Agid Y., Brice A. Analysis of the SCA1 CAG repeat in a large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol. 1995 Feb;37(2):176–180. doi: 10.1002/ana.410370207. [DOI] [PubMed] [Google Scholar]
- Frontali M., Sabbadini G., Novelletto A., Jodice C., Naso F., Spadaro M., Giunti P., Jacopini A. G., Veneziano L., Mantuano E. Genetic fitness in Huntington's Disease and Spinocerebellar Ataxia 1: a population genetics model for CAG repeat expansions. Ann Hum Genet. 1996 Sep;60(Pt 5):423–435. doi: 10.1111/j.1469-1809.1996.tb00440.x. [DOI] [PubMed] [Google Scholar]
- Genis D., Matilla T., Volpini V., Rosell J., Dávalos A., Ferrer I., Molins A., Estivill X. Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology. 1995 Jan;45(1):24–30. doi: 10.1212/wnl.45.1.24. [DOI] [PubMed] [Google Scholar]
- Green H. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell. 1993 Sep 24;74(6):955–956. doi: 10.1016/0092-8674(93)90718-6. [DOI] [PubMed] [Google Scholar]
- Imbert G., Saudou F., Yvert G., Devys D., Trottier Y., Garnier J. M., Weber C., Mandel J. L., Cancel G., Abbas N. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996 Nov;14(3):285–291. doi: 10.1038/ng1196-285. [DOI] [PubMed] [Google Scholar]
- Jodice C., Giovannone B., Calabresi V., Bellocchi M., Terrenato L., Novelletto A. Population variation analysis at nine loci containing expressed trinucleotide repeats. Ann Hum Genet. 1997 Sep;61(Pt 5):425–438. doi: 10.1046/j.1469-1809.1997.6150425.x. [DOI] [PubMed] [Google Scholar]
- Jodice C., Malaspina P., Persichetti F., Novelletto A., Spadaro M., Giunti P., Morocutti C., Terrenato L., Harding A. E., Frontali M. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I. Am J Hum Genet. 1994 Jun;54(6):959–965. [PMC free article] [PubMed] [Google Scholar]
- Jodice C., Mantuano E., Veneziano L., Trettel F., Sabbadini G., Calandriello L., Francia A., Spadaro M., Pierelli F., Salvi F. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet. 1997 Oct;6(11):1973–1978. doi: 10.1093/hmg/6.11.1973. [DOI] [PubMed] [Google Scholar]
- Joutel A., Ducros A., Vahedi K., Labauge P., Delrieu O., Pinsard N., Mancini J., Ponsot G., Gouttière F., Gastaut J. L. Genetic heterogeneity of familial hemiplegic migraine. Am J Hum Genet. 1994 Dec;55(6):1166–1172. [PMC free article] [PubMed] [Google Scholar]
- Kameya T., Abe K., Aoki M., Sahara M., Tobita M., Konno H., Itoyama Y. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology. 1995 Aug;45(8):1587–1594. doi: 10.1212/wnl.45.8.1587. [DOI] [PubMed] [Google Scholar]
- Liu B., Nicolaides N. C., Markowitz S., Willson J. K., Parsons R. E., Jen J., Papadopolous N., Peltomäki P., de la Chapelle A., Hamilton S. R. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995 Jan;9(1):48–55. doi: 10.1038/ng0195-48. [DOI] [PubMed] [Google Scholar]
- McNeil S. M., Novelletto A., Srinidhi J., Barnes G., Kornbluth I., Altherr M. R., Wasmuth J. J., Gusella J. F., MacDonald M. E., Myers R. H. Reduced penetrance of the Huntington's disease mutation. Hum Mol Genet. 1997 May;6(5):775–779. doi: 10.1093/hmg/6.5.775. [DOI] [PubMed] [Google Scholar]
- Ophoff R. A., Terwindt G. M., Vergouwe M. N., van Eijk R., Oefner P. J., Hoffman S. M., Lamerdin J. E., Mohrenweiser H. W., Bulman D. E., Ferrari M. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996 Nov 1;87(3):543–552. doi: 10.1016/s0092-8674(00)81373-2. [DOI] [PubMed] [Google Scholar]
- Ordway J. M., Tallaksen-Greene S., Gutekunst C. A., Bernstein E. M., Cearley J. A., Wiener H. W., Dure L. S., 4th, Lindsey R., Hersch S. M., Jope R. S. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell. 1997 Dec 12;91(6):753–763. doi: 10.1016/s0092-8674(00)80464-x. [DOI] [PubMed] [Google Scholar]
- Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Jr, Servadio A., Beaudet A. L., McCall A. E., Duvick L. A., Ranum L. P., Zoghbi H. Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221–226. doi: 10.1038/ng0793-221. [DOI] [PubMed] [Google Scholar]
- Paulson H. L., Perez M. K., Trottier Y., Trojanowski J. Q., Subramony S. H., Das S. S., Vig P., Mandel J. L., Fischbeck K. H., Pittman R. N. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997 Aug;19(2):333–344. doi: 10.1016/s0896-6273(00)80943-5. [DOI] [PubMed] [Google Scholar]
- Pearson C. E., Eichler E. E., Lorenzetti D., Kramer S. F., Zoghbi H. Y., Nelson D. L., Sinden R. R. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry. 1998 Feb 24;37(8):2701–2708. doi: 10.1021/bi972546c. [DOI] [PubMed] [Google Scholar]
- Quan F., Janas J., Popovich B. W. A novel CAG repeat configuration in the SCA1 gene: implications for the molecular diagnostics of spinocerebellar ataxia type 1. Hum Mol Genet. 1995 Dec;4(12):2411–2413. doi: 10.1093/hmg/4.12.2411. [DOI] [PubMed] [Google Scholar]
- Quigley C. A., Friedman K. J., Johnson A., Lafreniere R. G., Silverman L. M., Lubahn D. B., Brown T. R., Wilson E. M., Willard H. F., French F. S. Complete deletion of the androgen receptor gene: definition of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J Clin Endocrinol Metab. 1992 Apr;74(4):927–933. doi: 10.1210/jcem.74.4.1347772. [DOI] [PubMed] [Google Scholar]
- Ranum L. P., Chung M. Y., Banfi S., Bryer A., Schut L. J., Ramesar R., Duvick L. A., McCall A., Subramony S. H., Goldfarb L. Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the age at onset. Am J Hum Genet. 1994 Aug;55(2):244–252. [PMC free article] [PubMed] [Google Scholar]
- Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Ramesar R. S., Old J., Bontrop R., McMahon R., Barton D. E., Ferguson-Smith M. A. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat Genet. 1994 Aug;7(4):525–530. doi: 10.1038/ng0894-525. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Fukazawa T., Yanagihara T., Hamada T., Shima K., Matsumoto A., Hashimoto K., Ito N., Wakisaka A., Tashiro K. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand. 1996 Jan;93(1):64–71. doi: 10.1111/j.1600-0404.1996.tb00173.x. [DOI] [PubMed] [Google Scholar]
- Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G. P., Davies S. W., Lehrach H., Wanker E. E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997 Aug 8;90(3):549–558. doi: 10.1016/s0092-8674(00)80514-0. [DOI] [PubMed] [Google Scholar]
- Wei X., Neely A., Lacerda A. E., Olcese R., Stefani E., Perez-Reyes E., Birnbaumer L. Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac alpha 1 subunit. J Biol Chem. 1994 Jan 21;269(3):1635–1640. [PubMed] [Google Scholar]
- White J. K., Auerbach W., Duyao M. P., Vonsattel J. P., Gusella J. F., Joyner A. L., MacDonald M. E. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet. 1997 Dec;17(4):404–410. doi: 10.1038/ng1297-404. [DOI] [PubMed] [Google Scholar]
- Yue Q., Jen J. C., Nelson S. F., Baloh R. W. Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet. 1997 Nov;61(5):1078–1087. doi: 10.1086/301613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue Q., Jen J. C., Thwe M. M., Nelson S. F., Baloh R. W. De novo mutation in CACNA1A caused acetazolamide-responsive episodic ataxia. Am J Med Genet. 1998 May 26;77(4):298–301. doi: 10.1002/(sici)1096-8628(19980526)77:4<298::aid-ajmg9>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Zeitlin S., Liu J. P., Chapman D. L., Papaioannou V. E., Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet. 1995 Oct;11(2):155–163. doi: 10.1038/ng1095-155. [DOI] [PubMed] [Google Scholar]
- Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D. W., Amos C., Dobyns W. B., Subramony S. H., Zoghbi H. Y., Lee C. C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997 Jan;15(1):62–69. doi: 10.1038/ng0197-62. [DOI] [PubMed] [Google Scholar]