Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jun 29;354(1386):1095–1099. doi: 10.1098/rstb.1999.0465

Microsatellite and trinucleotide-repeat evolution: evidence for mutational bias and different rates of evolution in different lineages.

D C Rubinsztein 1, B Amos 1, G Cooper 1
PMCID: PMC1692610  PMID: 10434312

Abstract

Microsatellites are stretches of repetitive DNA, where individual repeat units comprise one to six bases. These sequences are often highly polymorphic with respect to repeat number and include trinucleotide repeats, which are abnormally expanded in a number of diseases. It has been widely assumed that microsatellite loci are as likely to gain and lose repeats when they mutate. In this review, we present population genetic and empirical data arguing that microsatellites, including normal alleles at trinucleotide-repeat disease loci, are more likely to expand in length when they mutate. In addition, our experiments suggest that the rates of expansion of such sequences differ in related species.

Full Text

The Full Text of this article is available as a PDF (109.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos W., Harwood J. Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):177–186. doi: 10.1098/rstb.1998.0200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos W., Sawcer S. J., Feakes R. W., Rubinsztein D. C. Microsatellites show mutational bias and heterozygote instability. Nat Genet. 1996 Aug;13(4):390–391. doi: 10.1038/ng0896-390. [DOI] [PubMed] [Google Scholar]
  3. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  4. Bruford M. W., Wayne R. K. Microsatellites and their application to population genetic studies. Curr Opin Genet Dev. 1993 Dec;3(6):939–943. doi: 10.1016/0959-437x(93)90017-j. [DOI] [PubMed] [Google Scholar]
  5. Cooper G., Rubinsztein D. C., Amos W. Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet. 1998 Sep;7(9):1425–1429. doi: 10.1093/hmg/7.9.1425. [DOI] [PubMed] [Google Scholar]
  6. Crawford A. M., Kappes S. M., Paterson K. A., deGotari M. J., Dodds K. G., Freking B. A., Stone R. T., Beattie C. W. Microsatellite evolution: testing the ascertainment bias hypothesis. J Mol Evol. 1998 Feb;46(2):256–260. doi: 10.1007/pl00006301. [DOI] [PubMed] [Google Scholar]
  7. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Djian P., Hancock J. M., Chana H. S. Codon repeats in genes associated with human diseases: fewer repeats in the genes of nonhuman primates and nucleotide substitutions concentrated at the sites of reiteration. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):417–421. doi: 10.1073/pnas.93.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., Folstein S., Ross C., Franz M., Abbott M. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993 Aug;4(4):387–392. doi: 10.1038/ng0893-387. [DOI] [PubMed] [Google Scholar]
  10. Ellegren H., Moore S., Robinson N., Byrne K., Ward W., Sheldon B. C. Microsatellite evolution--a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol. 1997 Aug;14(8):854–860. doi: 10.1093/oxfordjournals.molbev.a025826. [DOI] [PubMed] [Google Scholar]
  11. Ellegren H., Primmer C. R., Sheldon B. C. Microsatellite 'evolution': directionality or bias? Nat Genet. 1995 Dec;11(4):360–362. doi: 10.1038/ng1295-360. [DOI] [PubMed] [Google Scholar]
  12. Farrall M., Weeks D. E. Mutational mechanisms for generating microsatellite allele-frequency distributions: an analysis of 4,558 markers. Am J Hum Genet. 1998 May;62(5):1260–1262. doi: 10.1086/301829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoffman S. M., Brown W. M. The molecular mechanism underlying the "rare allele phenomenon" in a subspecific hybrid zone of the California field mouse, Peromyscus californicus. J Mol Evol. 1995 Dec;41(6):1165–1169. doi: 10.1007/BF00173198. [DOI] [PubMed] [Google Scholar]
  16. Jeffreys A. J., Allen M. J., Hagelberg E., Sonnberg A. Identification of the skeletal remains of Josef Mengele by DNA analysis. Forensic Sci Int. 1992 Sep;56(1):65–76. doi: 10.1016/0379-0738(92)90148-p. [DOI] [PubMed] [Google Scholar]
  17. Jeffreys A. J., Tamaki K., MacLeod A., Monckton D. G., Neil D. L., Armour J. A. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet. 1994 Feb;6(2):136–145. doi: 10.1038/ng0294-136. [DOI] [PubMed] [Google Scholar]
  18. Kruglyak S., Durrett R. T., Schug M. D., Aquadro C. F. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10774–10778. doi: 10.1073/pnas.95.18.10774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Monckton D. G., Neumann R., Guram T., Fretwell N., Tamaki K., MacLeod A., Jeffreys A. J. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat Genet. 1994 Oct;8(2):162–170. doi: 10.1038/ng1094-162. [DOI] [PubMed] [Google Scholar]
  20. Pollock D. D., Bergman A., Feldman M. W., Goldstein D. B. Microsatellite behavior with range constraints: parameter estimation and improved distances for use in phylogenetic reconstruction. Theor Popul Biol. 1998 Jun;53(3):256–271. doi: 10.1006/tpbi.1998.1363. [DOI] [PubMed] [Google Scholar]
  21. Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Ramesar R. S., Old J., Bontrop R., McMahon R., Barton D. E., Ferguson-Smith M. A. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat Genet. 1994 Aug;7(4):525–530. doi: 10.1038/ng0894-525. [DOI] [PubMed] [Google Scholar]
  22. Vergnaud G., Mariat D., Apiou F., Aurias A., Lathrop M., Lauthier V. The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics. 1991 Sep;11(1):135–144. doi: 10.1016/0888-7543(91)90110-z. [DOI] [PubMed] [Google Scholar]
  23. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  24. Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G., Lathrop M. A second-generation linkage map of the human genome. Nature. 1992 Oct 29;359(6398):794–801. doi: 10.1038/359794a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES