Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jun 29;354(1386):1005–1011. doi: 10.1098/rstb.1999.0452

Polyglutamine pathogenesis.

C A Ross 1, J D Wood 1, G Schilling 1, M F Peters 1, F C Nucifora Jr 1, J K Cooper 1, A H Sharp 1, R L Margolis 1, D R Borchelt 1
PMCID: PMC1692617  PMID: 10434299

Abstract

An increasing number of neurodegenerative disorders have been found to be caused by expanding CAG triplet repeats that code for polyglutamine. Huntington's disease (HD) is the most common of these disorders and dentatorubral-pallidoluysian atrophy (DRPLA) is very similar to HD, but is caused by mutation in a different gene, making them good models to study. In this review, we will concentrate on the roles of protein aggregation, nuclear localization and proteolytic processing in disease pathogenesis. In cell model studies of HD, we have found that truncated N-terminal portions of huntingtin (the HD gene product) with expanded repeats form more aggregates than longer or full length huntingtin polypeptides. These shorter fragments are also more prone to aggregate in the nucleus and cause more cell toxicity. Further experiments with huntingtin constructs harbouring exogenous nuclear import and nuclear export signals have implicated the nucleus in direct cell toxicity. We have made mouse models of HD and DRPLA using an N-terminal truncation of huntingtin (N171) and full-length atrophin-1 (the DRPLA gene product), respectively. In both models, diffuse neuronal nuclear staining and nuclear inclusion bodies are observed in animals expressing the expanded glutamine repeat protein, further implicating the nucleus as a primary site of neuronal dysfunction. Neuritic pathology is also observed in the HD mice. In the DRPLA mouse model, we have found that truncated fragments of atrophin-1 containing the glutamine repeat accumulate in the nucleus, suggesting that proteolysis may be critical for disease progression. Taken together, these data lead towards a model whereby proteolytic processing, nuclear localization and protein aggregation all contribute to pathogenesis.

Full Text

The Full Text of this article is available as a PDF (555.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew S. E., Goldberg Y. P., Hayden M. R. Rethinking genotype and phenotype correlations in polyglutamine expansion disorders. Hum Mol Genet. 1997 Nov;6(12):2005–2010. doi: 10.1093/hmg/6.12.2005. [DOI] [PubMed] [Google Scholar]
  2. Andrew S. E., Goldberg Y. P., Kremer B., Telenius H., Theilmann J., Adam S., Starr E., Squitieri F., Lin B., Kalchman M. A. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993 Aug;4(4):398–403. doi: 10.1038/ng0893-398. [DOI] [PubMed] [Google Scholar]
  3. Aronin N., Chase K., Young C., Sapp E., Schwarz C., Matta N., Kornreich R., Landwehrmeyer B., Bird E., Beal M. F. CAG expansion affects the expression of mutant Huntingtin in the Huntington's disease brain. Neuron. 1995 Nov;15(5):1193–1201. doi: 10.1016/0896-6273(95)90106-x. [DOI] [PubMed] [Google Scholar]
  4. Becher M. W., Kotzuk J. A., Sharp A. H., Davies S. W., Bates G. P., Price D. L., Ross C. A. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis. 1998 Apr;4(6):387–397. doi: 10.1006/nbdi.1998.0168. [DOI] [PubMed] [Google Scholar]
  5. Block-Galarza J., Chase K. O., Sapp E., Vaughn K. T., Vallee R. B., DiFiglia M., Aronin N. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport. 1997 Jul 7;8(9-10):2247–2251. doi: 10.1097/00001756-199707070-00031. [DOI] [PubMed] [Google Scholar]
  6. Brooks B. P., Fischbeck K. H. Spinal and bulbar muscular atrophy: a trinucleotide-repeat expansion neurodegenerative disease. Trends Neurosci. 1995 Oct;18(10):459–461. doi: 10.1016/0166-2236(95)94497-s. [DOI] [PubMed] [Google Scholar]
  7. Brooks B. P., Paulson H. L., Merry D. E., Salazar-Grueso E. F., Brinkmann A. O., Wilson E. M., Fischbeck K. H. Characterization of an expanded glutamine repeat androgen receptor in a neuronal cell culture system. Neurobiol Dis. 1997;3(4):313–323. doi: 10.1006/nbdi.1997.0126. [DOI] [PubMed] [Google Scholar]
  8. Burke J. R., Enghild J. J., Martin M. E., Jou Y. S., Myers R. M., Roses A. D., Vance J. M., Strittmatter W. J. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med. 1996 Mar;2(3):347–350. doi: 10.1038/nm0396-347. [DOI] [PubMed] [Google Scholar]
  9. Burright E. N., Clark H. B., Servadio A., Matilla T., Feddersen R. M., Yunis W. S., Duvick L. A., Zoghbi H. Y., Orr H. T. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995 Sep 22;82(6):937–948. doi: 10.1016/0092-8674(95)90273-2. [DOI] [PubMed] [Google Scholar]
  10. Burright E. N., Davidson J. D., Duvick L. A., Koshy B., Zoghbi H. Y., Orr H. T. Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum Mol Genet. 1997 Apr;6(4):513–518. doi: 10.1093/hmg/6.4.513. [DOI] [PubMed] [Google Scholar]
  11. Cha J. H., Kosinski C. M., Kerner J. A., Alsdorf S. A., Mangiarini L., Davies S. W., Penney J. B., Bates G. P., Young A. B. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6480–6485. doi: 10.1073/pnas.95.11.6480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colomer V., Engelender S., Sharp A. H., Duan K., Cooper J. K., Lanahan A., Lyford G., Worley P., Ross C. A. Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum Mol Genet. 1997 Sep;6(9):1519–1525. doi: 10.1093/hmg/6.9.1519. [DOI] [PubMed] [Google Scholar]
  13. Cooper J. K., Schilling G., Peters M. F., Herring W. J., Sharp A. H., Kaminsky Z., Masone J., Khan F. A., Delanoy M., Borchelt D. R. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet. 1998 May;7(5):783–790. doi: 10.1093/hmg/7.5.783. [DOI] [PubMed] [Google Scholar]
  14. Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L., Bates G. P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997 Aug 8;90(3):537–548. doi: 10.1016/s0092-8674(00)80513-9. [DOI] [PubMed] [Google Scholar]
  15. De Rooij K. E., Dorsman J. C., Smoor M. A., Den Dunnen J. T., Van Ommen G. J. Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum Mol Genet. 1996 Aug;5(8):1093–1099. doi: 10.1093/hmg/5.8.1093. [DOI] [PubMed] [Google Scholar]
  16. DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997 Sep 26;277(5334):1990–1993. doi: 10.1126/science.277.5334.1990. [DOI] [PubMed] [Google Scholar]
  17. DiFiglia M., Sapp E., Chase K., Schwarz C., Meloni A., Young C., Martin E., Vonsattel J. P., Carraway R., Reeves S. A. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 1995 May;14(5):1075–1081. doi: 10.1016/0896-6273(95)90346-1. [DOI] [PubMed] [Google Scholar]
  18. Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., Folstein S., Ross C., Franz M., Abbott M. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993 Aug;4(4):387–392. doi: 10.1038/ng0893-387. [DOI] [PubMed] [Google Scholar]
  19. Engelender S., Sharp A. H., Colomer V., Tokito M. K., Lanahan A., Worley P., Holzbaur E. L., Ross C. A. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet. 1997 Dec;6(13):2205–2212. doi: 10.1093/hmg/6.13.2205. [DOI] [PubMed] [Google Scholar]
  20. Faber P. W., Alter J. R., MacDonald M. E., Hart A. C. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):179–184. doi: 10.1073/pnas.96.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Faber P. W., Barnes G. T., Srinidhi J., Chen J., Gusella J. F., MacDonald M. E. Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet. 1998 Sep;7(9):1463–1474. doi: 10.1093/hmg/7.9.1463. [DOI] [PubMed] [Google Scholar]
  22. Ferrante R. J., Gutekunst C. A., Persichetti F., McNeil S. M., Kowall N. W., Gusella J. F., MacDonald M. E., Beal M. F., Hersch S. M. Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J Neurosci. 1997 May 1;17(9):3052–3063. doi: 10.1523/JNEUROSCI.17-09-03052.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goldberg Y. P., Nicholson D. W., Rasper D. M., Kalchman M. A., Koide H. B., Graham R. K., Bromm M., Kazemi-Esfarjani P., Thornberry N. A., Vaillancourt J. P. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet. 1996 Aug;13(4):442–449. doi: 10.1038/ng0896-442. [DOI] [PubMed] [Google Scholar]
  24. Graveland G. A., Williams R. S., DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science. 1985 Feb 15;227(4688):770–773. doi: 10.1126/science.3155875. [DOI] [PubMed] [Google Scholar]
  25. Gusella J. F., Persichetti F., MacDonald M. E. The genetic defect causing Huntington's disease: repeated in other contexts? Mol Med. 1997 Apr;3(4):238–246. [PMC free article] [PubMed] [Google Scholar]
  26. Gutekunst C. A., Li S. H., Yi H., Mulroy J. S., Kuemmerle S., Jones R., Rye D., Ferrante R. J., Hersch S. M., Li X. J. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci. 1999 Apr 1;19(7):2522–2534. doi: 10.1523/JNEUROSCI.19-07-02522.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hackam A. S., Singaraja R., Wellington C. L., Metzler M., McCutcheon K., Zhang T., Kalchman M., Hayden M. R. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol. 1998 Jun 1;141(5):1097–1105. doi: 10.1083/jcb.141.5.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hackam A. S., Singaraja R., Zhang T., Gan L., Hayden M. R. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genet. 1999 Jan;8(1):25–33. doi: 10.1093/hmg/8.1.25. [DOI] [PubMed] [Google Scholar]
  29. Holmberg M., Duyckaerts C., Dürr A., Cancel G., Gourfinkel-An I., Damier P., Faucheux B., Trottier Y., Hirsch E. C., Agid Y. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet. 1998 May;7(5):913–918. doi: 10.1093/hmg/7.5.913. [DOI] [PubMed] [Google Scholar]
  30. Hoogeveen A. T., Willemsen R., Meyer N., de Rooij K. E., Roos R. A., van Ommen G. J., Galjaard H. Characterization and localization of the Huntington disease gene product. Hum Mol Genet. 1993 Dec;2(12):2069–2073. doi: 10.1093/hmg/2.12.2069. [DOI] [PubMed] [Google Scholar]
  31. Igarashi S., Koide R., Shimohata T., Yamada M., Hayashi Y., Takano H., Date H., Oyake M., Sato T., Sato A. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet. 1998 Feb;18(2):111–117. doi: 10.1038/ng0298-111. [DOI] [PubMed] [Google Scholar]
  32. Ikeda H., Yamaguchi M., Sugai S., Aze Y., Narumiya S., Kakizuka A. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet. 1996 Jun;13(2):196–202. doi: 10.1038/ng0696-196. [DOI] [PubMed] [Google Scholar]
  33. Jackson G. R., Salecker I., Dong X., Yao X., Arnheim N., Faber P. W., MacDonald M. E., Zipursky S. L. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron. 1998 Sep;21(3):633–642. doi: 10.1016/s0896-6273(00)80573-5. [DOI] [PubMed] [Google Scholar]
  34. Klement I. A., Skinner P. J., Kaytor M. D., Yi H., Hersch S. M., Clark H. B., Zoghbi H. Y., Orr H. T. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998 Oct 2;95(1):41–53. doi: 10.1016/s0092-8674(00)81781-x. [DOI] [PubMed] [Google Scholar]
  35. Koshy B., Matilla T., Burright E. N., Merry D. E., Fischbeck K. H., Orr H. T., Zoghbi H. Y. Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet. 1996 Sep;5(9):1311–1318. doi: 10.1093/hmg/5.9.1311. [DOI] [PubMed] [Google Scholar]
  36. Lansbury P. T., Jr Structural neurology: are seeds at the root of neuronal degeneration? Neuron. 1997 Dec;19(6):1151–1154. doi: 10.1016/s0896-6273(00)80406-7. [DOI] [PubMed] [Google Scholar]
  37. Li M., Miwa S., Kobayashi Y., Merry D. E., Yamamoto M., Tanaka F., Doyu M., Hashizume Y., Fischbeck K. H., Sobue G. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol. 1998 Aug;44(2):249–254. doi: 10.1002/ana.410440216. [DOI] [PubMed] [Google Scholar]
  38. Li S. H., Gutekunst C. A., Hersch S. M., Li X. J. Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci. 1998 Feb 15;18(4):1261–1269. doi: 10.1523/JNEUROSCI.18-04-01261.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Li S. H., Li X. J. Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum Mol Genet. 1998 May;7(5):777–782. doi: 10.1093/hmg/7.5.777. [DOI] [PubMed] [Google Scholar]
  40. Li X. J., Li S. H., Sharp A. H., Nucifora F. C., Jr, Schilling G., Lanahan A., Worley P., Snyder S. H., Ross C. A. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 1995 Nov 23;378(6555):398–402. doi: 10.1038/378398a0. [DOI] [PubMed] [Google Scholar]
  41. Liu Y. F., Deth R. C., Devys D. SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes. J Biol Chem. 1997 Mar 28;272(13):8121–8124. doi: 10.1074/jbc.272.13.8121. [DOI] [PubMed] [Google Scholar]
  42. Lunkes A., Mandel J. L. A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum Mol Genet. 1998 Sep;7(9):1355–1361. doi: 10.1093/hmg/7.9.1355. [DOI] [PubMed] [Google Scholar]
  43. Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C., Lawton M., Trottier Y., Lehrach H., Davies S. W. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996 Nov 1;87(3):493–506. doi: 10.1016/s0092-8674(00)81369-0. [DOI] [PubMed] [Google Scholar]
  44. Martindale D., Hackam A., Wieczorek A., Ellerby L., Wellington C., McCutcheon K., Singaraja R., Kazemi-Esfarjani P., Devon R., Kim S. U. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet. 1998 Feb;18(2):150–154. doi: 10.1038/ng0298-150. [DOI] [PubMed] [Google Scholar]
  45. Merry D. E., Kobayashi Y., Bailey C. K., Taye A. A., Fischbeck K. H. Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum Mol Genet. 1998 Apr;7(4):693–701. doi: 10.1093/hmg/7.4.693. [DOI] [PubMed] [Google Scholar]
  46. Miyashita T., Nagao K., Ohmi K., Yanagisawa H., Okamura-Oho Y., Yamada M. Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem Biophys Res Commun. 1998 Aug 10;249(1):96–102. doi: 10.1006/bbrc.1998.9096. [DOI] [PubMed] [Google Scholar]
  47. Moulder K. L., Onodera O., Burke J. R., Strittmatter W. J., Johnson E. M., Jr Generation of neuronal intranuclear inclusions by polyglutamine-GFP: analysis of inclusion clearance and toxicity as a function of polyglutamine length. J Neurosci. 1999 Jan 15;19(2):705–715. doi: 10.1523/JNEUROSCI.19-02-00705.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Myers R. H., Vonsattel J. P., Stevens T. J., Cupples L. A., Richardson E. P., Martin J. B., Bird E. D. Clinical and neuropathologic assessment of severity in Huntington's disease. Neurology. 1988 Mar;38(3):341–347. doi: 10.1212/wnl.38.3.341. [DOI] [PubMed] [Google Scholar]
  49. Nance M. A. Clinical aspects of CAG repeat diseases. Brain Pathol. 1997 Jul;7(3):881–900. doi: 10.1111/j.1750-3639.1997.tb00892.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ordway J. M., Tallaksen-Greene S., Gutekunst C. A., Bernstein E. M., Cearley J. A., Wiener H. W., Dure L. S., 4th, Lindsey R., Hersch S. M., Jope R. S. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell. 1997 Dec 12;91(6):753–763. doi: 10.1016/s0092-8674(00)80464-x. [DOI] [PubMed] [Google Scholar]
  51. Paulson H. L., Fischbeck K. H. Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci. 1996;19:79–107. doi: 10.1146/annurev.ne.19.030196.000455. [DOI] [PubMed] [Google Scholar]
  52. Paulson H. L., Perez M. K., Trottier Y., Trojanowski J. Q., Subramony S. H., Das S. S., Vig P., Mandel J. L., Fischbeck K. H., Pittman R. N. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997 Aug;19(2):333–344. doi: 10.1016/s0896-6273(00)80943-5. [DOI] [PubMed] [Google Scholar]
  53. Perutz M. Polar zippers: their role in human disease. Protein Sci. 1994 Oct;3(10):1629–1637. doi: 10.1002/pro.5560031002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Reddy P. H., Williams M., Charles V., Garrett L., Pike-Buchanan L., Whetsell W. O., Jr, Miller G., Tagle D. A. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet. 1998 Oct;20(2):198–202. doi: 10.1038/2510. [DOI] [PubMed] [Google Scholar]
  55. Ross C. A. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron. 1997 Dec;19(6):1147–1150. doi: 10.1016/s0896-6273(00)80405-5. [DOI] [PubMed] [Google Scholar]
  56. Ross C. A., Margolis R. L., Rosenblatt A., Ranen N. G., Becher M. W., Aylward E. Huntington disease and the related disorder, dentatorubral-pallidoluysian atrophy (DRPLA). Medicine (Baltimore) 1997 Sep;76(5):305–338. doi: 10.1097/00005792-199709000-00001. [DOI] [PubMed] [Google Scholar]
  57. Ross C. A. When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron. 1995 Sep;15(3):493–496. doi: 10.1016/0896-6273(95)90138-8. [DOI] [PubMed] [Google Scholar]
  58. Sapp E., Schwarz C., Chase K., Bhide P. G., Young A. B., Penney J., Vonsattel J. P., Aronin N., DiFiglia M. Huntingtin localization in brains of normal and Huntington's disease patients. Ann Neurol. 1997 Oct;42(4):604–612. doi: 10.1002/ana.410420411. [DOI] [PubMed] [Google Scholar]
  59. Saudou F., Finkbeiner S., Devys D., Greenberg M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell. 1998 Oct 2;95(1):55–66. doi: 10.1016/s0092-8674(00)81782-1. [DOI] [PubMed] [Google Scholar]
  60. Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G. P., Davies S. W., Lehrach H., Wanker E. E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997 Aug 8;90(3):549–558. doi: 10.1016/s0092-8674(00)80514-0. [DOI] [PubMed] [Google Scholar]
  61. Servadio A., Koshy B., Armstrong D., Antalffy B., Orr H. T., Zoghbi H. Y. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet. 1995 May;10(1):94–98. doi: 10.1038/ng0595-94. [DOI] [PubMed] [Google Scholar]
  62. Sharp A. H., Loev S. J., Schilling G., Li S. H., Li X. J., Bao J., Wagster M. V., Kotzuk J. A., Steiner J. P., Lo A. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron. 1995 May;14(5):1065–1074. doi: 10.1016/0896-6273(95)90345-3. [DOI] [PubMed] [Google Scholar]
  63. Skinner P. J., Koshy B. T., Cummings C. J., Klement I. A., Helin K., Servadio A., Zoghbi H. Y., Orr H. T. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature. 1997 Oct 30;389(6654):971–974. doi: 10.1038/40153. [DOI] [PubMed] [Google Scholar]
  64. Stine O. C., Pleasant N., Franz M. L., Abbott M. H., Folstein S. E., Ross C. A. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Hum Mol Genet. 1993 Oct;2(10):1547–1549. doi: 10.1093/hmg/2.10.1547. [DOI] [PubMed] [Google Scholar]
  65. Stott K., Blackburn J. M., Butler P. J., Perutz M. Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6509–6513. doi: 10.1073/pnas.92.14.6509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tait D., Riccio M., Sittler A., Scherzinger E., Santi S., Ognibene A., Maraldi N. M., Lehrach H., Wanker E. E. Ataxin-3 is transported into the nucleus and associates with the nuclear matrix. Hum Mol Genet. 1998 Jun;7(6):991–997. doi: 10.1093/hmg/7.6.991. [DOI] [PubMed] [Google Scholar]
  67. Trottier Y., Cancel G., An-Gourfinkel I., Lutz Y., Weber C., Brice A., Hirsch E., Mandel J. L. Heterogeneous intracellular localization and expression of ataxin-3. Neurobiol Dis. 1998 Nov;5(5):335–347. doi: 10.1006/nbdi.1998.0208. [DOI] [PubMed] [Google Scholar]
  68. Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D., Richardson E. P., Jr Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol. 1985 Nov;44(6):559–577. doi: 10.1097/00005072-198511000-00003. [DOI] [PubMed] [Google Scholar]
  69. Wanker E. E., Rovira C., Scherzinger E., Hasenbank R., Wälter S., Tait D., Colicelli J., Lehrach H. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Mol Genet. 1997 Mar;6(3):487–495. doi: 10.1093/hmg/6.3.487. [DOI] [PubMed] [Google Scholar]
  70. Warrick J. M., Paulson H. L., Gray-Board G. L., Bui Q. T., Fischbeck K. H., Pittman R. N., Bonini N. M. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. 1998 Jun 12;93(6):939–949. doi: 10.1016/s0092-8674(00)81200-3. [DOI] [PubMed] [Google Scholar]
  71. Wellington C. L., Ellerby L. M., Hackam A. S., Margolis R. L., Trifiro M. A., Singaraja R., McCutcheon K., Salvesen G. S., Propp S. S., Bromm M. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem. 1998 Apr 10;273(15):9158–9167. doi: 10.1074/jbc.273.15.9158. [DOI] [PubMed] [Google Scholar]
  72. Zoghbi H. Y. The expanding world of ataxins. Nat Genet. 1996 Nov;14(3):237–238. doi: 10.1038/ng1196-237. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES