Abstract
Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI.
Full Text
The Full Text of this article is available as a PDF (645.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albert M. S., Cates G. D., Driehuys B., Happer W., Saam B., Springer C. S., Jr, Wishnia A. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 1994 Jul 21;370(6486):199–201. doi: 10.1038/370199a0. [DOI] [PubMed] [Google Scholar]
- Allen P. J., Polizzi G., Krakow K., Fish D. R., Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage. 1998 Oct;8(3):229–239. doi: 10.1006/nimg.1998.0361. [DOI] [PubMed] [Google Scholar]
- Ashe J., Ugurbil K. Functional imaging of the motor system. Curr Opin Neurobiol. 1994 Dec;4(6):832–839. doi: 10.1016/0959-4388(94)90131-7. [DOI] [PubMed] [Google Scholar]
- Bandettini P. A., Jesmanowicz A., Van Kylen J., Birn R. M., Hyde J. S. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med. 1998 Mar;39(3):410–416. doi: 10.1002/mrm.1910390311. [DOI] [PubMed] [Google Scholar]
- Bandettini P. A., Kwong K. K., Davis T. L., Tootell R. B., Wong E. C., Fox P. T., Belliveau J. W., Weisskoff R. M., Rosen B. R. Characterization of cerebral blood oxygenation and flow changes during prolonged brain activation. Hum Brain Mapp. 1997;5(2):93–109. [PubMed] [Google Scholar]
- Bandettini P. A., Wong E. C., Hinks R. S., Tikofsky R. S., Hyde J. S. Time course EPI of human brain function during task activation. Magn Reson Med. 1992 Jun;25(2):390–397. doi: 10.1002/mrm.1910250220. [DOI] [PubMed] [Google Scholar]
- Belliveau J. W., Kennedy D. N., Jr, McKinstry R. C., Buchbinder B. R., Weisskoff R. M., Cohen M. S., Vevea J. M., Brady T. J., Rosen B. R. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991 Nov 1;254(5032):716–719. doi: 10.1126/science.1948051. [DOI] [PubMed] [Google Scholar]
- Binder J. R. Neuroanatomy of language processing studied with functional MRI. Clin Neurosci. 1997;4(2):87–94. [PubMed] [Google Scholar]
- Birn R. M., Bandettini P. A., Cox R. W., Jesmanowicz A., Shaker R. Magnetic field changes in the human brain due to swallowing or speaking. Magn Reson Med. 1998 Jul;40(1):55–60. doi: 10.1002/mrm.1910400108. [DOI] [PubMed] [Google Scholar]
- Bohning D. E., Shastri A., Nahas Z., Lorberbaum J. P., Andersen S. W., Dannels W. R., Haxthausen E. U., Vincent D. J., George M. S. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol. 1998 Jun;33(6):336–340. doi: 10.1097/00004424-199806000-00004. [DOI] [PubMed] [Google Scholar]
- Buxton R. B., Frank L. R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab. 1997 Jan;17(1):64–72. doi: 10.1097/00004647-199701000-00009. [DOI] [PubMed] [Google Scholar]
- Buxton R. B., Wong E. C., Frank L. R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998 Jun;39(6):855–864. doi: 10.1002/mrm.1910390602. [DOI] [PubMed] [Google Scholar]
- Chen W., Zhu X. H., Kato T., Andersen P., Ugurbil K. Spatial and temporal differentiation of fMRI BOLD response in primary visual cortex of human brain during sustained visual simulation. Magn Reson Med. 1998 Apr;39(4):520–527. doi: 10.1002/mrm.1910390404. [DOI] [PubMed] [Google Scholar]
- Davis K. D., Taylor S. J., Crawley A. P., Wood M. L., Mikulis D. J. Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol. 1997 Jun;77(6):3370–3380. doi: 10.1152/jn.1997.77.6.3370. [DOI] [PubMed] [Google Scholar]
- Davis T. L., Kwong K. K., Weisskoff R. M., Rosen B. R. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834–1839. doi: 10.1073/pnas.95.4.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dymond R. C., Norris D. G. Mechanism and echo time dependence of the fast response in fMR. Magn Reson Med. 1997 Jul;38(1):1–6. doi: 10.1002/mrm.1910380102. [DOI] [PubMed] [Google Scholar]
- Edelman R. R., Siewert B., Adamis M., Gaa J., Laub G., Wielopolski P. Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med. 1994 Feb;31(2):233–238. doi: 10.1002/mrm.1910310219. [DOI] [PubMed] [Google Scholar]
- Eden G. F., Joseph J. E., Brown H. E., Brown C. P., Zeffiro T. A. Utilizing hemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behavior interleaved gradients technique. Magn Reson Med. 1999 Jan;41(1):13–20. doi: 10.1002/(sici)1522-2594(199901)41:1<13::aid-mrm4>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
- Fisel C. R., Ackerman J. L., Buxton R. B., Garrido L., Belliveau J. W., Rosen B. R., Brady T. J. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med. 1991 Feb;17(2):336–347. doi: 10.1002/mrm.1910170206. [DOI] [PubMed] [Google Scholar]
- Fletcher P. C., Frith C. D., Rugg M. D. The functional neuroanatomy of episodic memory. Trends Neurosci. 1997 May;20(5):213–218. doi: 10.1016/s0166-2236(96)01013-2. [DOI] [PubMed] [Google Scholar]
- Fox P. T., Raichle M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140–1144. doi: 10.1073/pnas.83.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox P. T., Raichle M. E., Mintun M. A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988 Jul 22;241(4864):462–464. doi: 10.1126/science.3260686. [DOI] [PubMed] [Google Scholar]
- Frahm J., Krüger G., Merboldt K. D., Kleinschmidt A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med. 1996 Feb;35(2):143–148. doi: 10.1002/mrm.1910350202. [DOI] [PubMed] [Google Scholar]
- Frahm J., Merboldt K. D., Hänicke W. Functional MRI of human brain activation at high spatial resolution. Magn Reson Med. 1993 Jan;29(1):139–144. doi: 10.1002/mrm.1910290126. [DOI] [PubMed] [Google Scholar]
- Frahm J., Merboldt K. D., Hänicke W., Kleinschmidt A., Boecker H. Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed. 1994 Mar;7(1-2):45–53. doi: 10.1002/nbm.1940070108. [DOI] [PubMed] [Google Scholar]
- Fransson P., Krüger G., Merboldt K. D., Frahm J. Temporal characteristics of oxygenation-sensitive MRI responses to visual activation in humans. Magn Reson Med. 1998 Jun;39(6):912–919. doi: 10.1002/mrm.1910390608. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Fletcher P., Josephs O., Holmes A., Rugg M. D., Turner R. Event-related fMRI: characterizing differential responses. Neuroimage. 1998 Jan;7(1):30–40. doi: 10.1006/nimg.1997.0306. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Josephs O., Rees G., Turner R. Nonlinear event-related responses in fMRI. Magn Reson Med. 1998 Jan;39(1):41–52. doi: 10.1002/mrm.1910390109. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Williams S., Howard R., Frackowiak R. S., Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996 Mar;35(3):346–355. doi: 10.1002/mrm.1910350312. [DOI] [PubMed] [Google Scholar]
- Gati J. S., Menon R. S., Ugurbil K., Rutt B. K. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med. 1997 Aug;38(2):296–302. doi: 10.1002/mrm.1910380220. [DOI] [PubMed] [Google Scholar]
- Glover G. H., Lai S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn Reson Med. 1998 Mar;39(3):361–368. doi: 10.1002/mrm.1910390305. [DOI] [PubMed] [Google Scholar]
- Haacke E. M., Hopkins A., Lai S., Buckley P., Friedman L., Meltzer H., Hedera P., Friedland R., Klein S., Thompson L. 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies. NMR Biomed. 1994 Mar;7(1-2):54–62. doi: 10.1002/nbm.1940070109. [DOI] [PubMed] [Google Scholar]
- Hajnal J. V., Bydder G. M., Young I. R. fMRI: does correlation imply activation? NMR Biomed. 1995 May;8(3):97–100. doi: 10.1002/nbm.1940080303. [DOI] [PubMed] [Google Scholar]
- Harvey P. R., Mansfield P. Echo-volumar imaging (EVI) at 0.5 T: first whole-body volunteer studies. Magn Reson Med. 1996 Jan;35(1):80–88. doi: 10.1002/mrm.1910350111. [DOI] [PubMed] [Google Scholar]
- Howseman A. M., Grootoonk S., Porter D. A., Ramdeen J., Holmes A. P., Turner R. The effect of slice order and thickness on fMRI activation data using multislice echo-planar imaging. Neuroimage. 1999 Apr;9(4):363–376. doi: 10.1006/nimg.1998.0418. [DOI] [PubMed] [Google Scholar]
- Howseman A. M., Porter D. A., Hutton C., Josephs O., Turner R. Blood oxygenation level dependent signal time courses during prolonged visual stimulation. Magn Reson Imaging. 1998;16(1):1–11. doi: 10.1016/s0730-725x(97)00238-5. [DOI] [PubMed] [Google Scholar]
- Hu X., Le T. H. Artifact reduction in EPI with phase-encoded reference scan. Magn Reson Med. 1996 Jul;36(1):166–171. doi: 10.1002/mrm.1910360126. [DOI] [PubMed] [Google Scholar]
- Hu X., Le T. H., Uğurbil K. Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Reson Med. 1997 Jun;37(6):877–884. doi: 10.1002/mrm.1910370612. [DOI] [PubMed] [Google Scholar]
- Ives J. R., Warach S., Schmitt F., Edelman R. R., Schomer D. L. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993 Dec;87(6):417–420. doi: 10.1016/0013-4694(93)90156-p. [DOI] [PubMed] [Google Scholar]
- Jackson G. D., Connelly A., Cross J. H., Gordon I., Gadian D. G. Functional magnetic resonance imaging of focal seizures. Neurology. 1994 May;44(5):850–856. doi: 10.1212/wnl.44.5.850. [DOI] [PubMed] [Google Scholar]
- Jakob P. M., Schlaug G., Griswold M., Lovblad K. O., Thomas R., Ives J. R., Matheson J. K., Edelman R. R. Functional burst imaging. Magn Reson Med. 1998 Oct;40(4):614–621. doi: 10.1002/mrm.1910400414. [DOI] [PubMed] [Google Scholar]
- Janz C., Speck O., Hennig J. Time-resolved measurements of brain activation after a short visual stimulus: new results on the physiological mechanisms of the cortical response. NMR Biomed. 1997 Jun-Aug;10(4-5):222–229. doi: 10.1002/(sici)1099-1492(199706/08)10:4/5<222::aid-nbm462>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- Jesmanowicz A., Bandettini P. A., Hyde J. S. Single-shot half k-space high-resolution gradient-recalled EPI for fMRI at 3 Tesla. Magn Reson Med. 1998 Nov;40(5):754–762. doi: 10.1002/mrm.1910400517. [DOI] [PubMed] [Google Scholar]
- Jezzard P., Balaban R. S. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995 Jul;34(1):65–73. doi: 10.1002/mrm.1910340111. [DOI] [PubMed] [Google Scholar]
- Jueptner M., Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage. 1995 Jun;2(2):148–156. doi: 10.1006/nimg.1995.1017. [DOI] [PubMed] [Google Scholar]
- Kim S. G., Hendrich K., Hu X., Merkle H., Uğurbil K. Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed. 1994 Mar;7(1-2):69–74. doi: 10.1002/nbm.1940070111. [DOI] [PubMed] [Google Scholar]
- Kim S. G., Hu X., Adriany G., Uğurbil K. Fast interleaved echo-planar imaging with navigator: high resolution anatomic and functional images at 4 Tesla. Magn Reson Med. 1996 Jun;35(6):895–902. doi: 10.1002/mrm.1910350618. [DOI] [PubMed] [Google Scholar]
- Kim S. G., Richter W., Uğurbil K. Limitations of temporal resolution in functional MRI. Magn Reson Med. 1997 Apr;37(4):631–636. doi: 10.1002/mrm.1910370427. [DOI] [PubMed] [Google Scholar]
- Krüger G., Kleinschmidt A., Frahm J. Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained activation of human visual cortex. Magn Reson Med. 1996 Jun;35(6):797–800. doi: 10.1002/mrm.1910350602. [DOI] [PubMed] [Google Scholar]
- Lai S., Glover G. H. Three-dimensional spiral fMRI technique: a comparison with 2D spiral acquisition. Magn Reson Med. 1998 Jan;39(1):68–78. doi: 10.1002/mrm.1910390112. [DOI] [PubMed] [Google Scholar]
- Lai S., Hopkins A. L., Haacke E. M., Li D., Wasserman B. A., Buckley P., Friedman L., Meltzer H., Hedera P., Friedland R. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med. 1993 Sep;30(3):387–392. doi: 10.1002/mrm.1910300318. [DOI] [PubMed] [Google Scholar]
- Lee A. T., Glover G. H., Meyer C. H. Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson Med. 1995 Jun;33(6):745–754. doi: 10.1002/mrm.1910330602. [DOI] [PubMed] [Google Scholar]
- Lemieux L., Allen P. J., Franconi F., Symms M. R., Fish D. R. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med. 1997 Dec;38(6):943–952. doi: 10.1002/mrm.1910380614. [DOI] [PubMed] [Google Scholar]
- Malonek D., Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996 Apr 26;272(5261):551–554. doi: 10.1126/science.272.5261.551. [DOI] [PubMed] [Google Scholar]
- Menon R. S., Ogawa S., Hu X., Strupp J. P., Anderson P., Uğurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med. 1995 Mar;33(3):453–459. doi: 10.1002/mrm.1910330323. [DOI] [PubMed] [Google Scholar]
- Menon R. S., Ogawa S., Tank D. W., Uğurbil K. Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med. 1993 Sep;30(3):380–386. doi: 10.1002/mrm.1910300317. [DOI] [PubMed] [Google Scholar]
- Noll D. C., Genovese C. R., Nystrom L. E., Vazquez A. L., Forman S. D., Eddy W. F., Cohen J. D. Estimating test-retest reliability in functional MR imaging. II: Application to motor and cognitive activation studies. Magn Reson Med. 1997 Sep;38(3):508–517. doi: 10.1002/mrm.1910380320. [DOI] [PubMed] [Google Scholar]
- Ogawa S., Lee T. M., Kay A. R., Tank D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868–9872. doi: 10.1073/pnas.87.24.9868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa S., Menon R. S., Tank D. W., Kim S. G., Merkle H., Ellermann J. M., Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993 Mar;64(3):803–812. doi: 10.1016/S0006-3495(93)81441-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951–5955. doi: 10.1073/pnas.89.13.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips M. L., Young A. W., Senior C., Brammer M., Andrew C., Calder A. J., Bullmore E. T., Perrett D. I., Rowland D., Williams S. C. A specific neural substrate for perceiving facial expressions of disgust. Nature. 1997 Oct 2;389(6650):495–498. doi: 10.1038/39051. [DOI] [PubMed] [Google Scholar]
- Ramsey N. F., van den Brink J. S., van Muiswinkel A. M., Folkers P. J., Moonen C. T., Jansma J. M., Kahn R. S. Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure. Neuroimage. 1998 Oct;8(3):240–248. doi: 10.1006/nimg.1998.0358. [DOI] [PubMed] [Google Scholar]
- Reber P. J., Wong E. C., Buxton R. B., Frank L. R. Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med. 1998 Feb;39(2):328–330. doi: 10.1002/mrm.1910390223. [DOI] [PubMed] [Google Scholar]
- Rees G., Howseman A., Josephs O., Frith C. D., Friston K. J., Frackowiak R. S., Turner R. Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage. 1997 Nov;6(4):270–278. doi: 10.1006/nimg.1997.0300. [DOI] [PubMed] [Google Scholar]
- Robitaille P. M., Abduljalil A. M., Kangarlu A., Zhang X., Yu Y., Burgess R., Bair S., Noa P., Yang L., Zhu H. Human magnetic resonance imaging at 8 T. NMR Biomed. 1998 Oct;11(6):263–265. doi: 10.1002/(sici)1099-1492(199810)11:6<263::aid-nbm549>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
- Rosen B. R., Buckner R. L., Dale A. M. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):773–780. doi: 10.1073/pnas.95.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider F., Grodd W., Weiss U., Klose U., Mayer K. R., Nägele T., Gur R. C. Functional MRI reveals left amygdala activation during emotion. Psychiatry Res. 1997 Dec 30;76(2-3):75–82. doi: 10.1016/s0925-4927(97)00063-2. [DOI] [PubMed] [Google Scholar]
- Shulman R. G., Blamire A. M., Rothman D. L., McCarthy G. Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3127–3133. doi: 10.1073/pnas.90.8.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shulman R. G., Rothman D. L. Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11993–11998. doi: 10.1073/pnas.95.20.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song A. W., Wong E. C., Tan S. G., Hyde J. S. Diffusion weighted fMRI at 1.5 T. Magn Reson Med. 1996 Feb;35(2):155–158. doi: 10.1002/mrm.1910350204. [DOI] [PubMed] [Google Scholar]
- Stables L. A., Kennan R. P., Gore J. C. Asymmetric spin-echo imaging of magnetically inhomogeneous systems: theory, experiment, and numerical studies. Magn Reson Med. 1998 Sep;40(3):432–442. doi: 10.1002/mrm.1910400314. [DOI] [PubMed] [Google Scholar]
- Teo P. C., Sapiro G., Wandell B. A. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imaging. 1997 Dec;16(6):852–863. doi: 10.1109/42.650881. [DOI] [PubMed] [Google Scholar]
- Thulborn K. R., Chang S. Y., Shen G. X., Voyvodic J. T. High-resolution echo-planar fMRI of human visual cortex at 3.0 tesla. NMR Biomed. 1997 Jun-Aug;10(4-5):183–190. doi: 10.1002/(sici)1099-1492(199706/08)10:4/5<183::aid-nbm469>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Turner R., Jezzard P., Wen H., Kwong K. K., Le Bihan D., Zeffiro T., Balaban R. S. Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med. 1993 Feb;29(2):277–279. doi: 10.1002/mrm.1910290221. [DOI] [PubMed] [Google Scholar]
- Turner R., Le Bihan D., Moonen C. T., Despres D., Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991 Nov;22(1):159–166. doi: 10.1002/mrm.1910220117. [DOI] [PubMed] [Google Scholar]
- Weisskoff R. M., Zuo C. S., Boxerman J. L., Rosen B. R. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med. 1994 Jun;31(6):601–610. doi: 10.1002/mrm.1910310605. [DOI] [PubMed] [Google Scholar]
- Yang Q. X., Dardzinski B. J., Li S., Eslinger P. J., Smith M. B. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med. 1997 Mar;37(3):331–335. doi: 10.1002/mrm.1910370304. [DOI] [PubMed] [Google Scholar]
- Yang X., Hyder F., Shulman R. G. Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Reson Med. 1997 Dec;38(6):874–877. doi: 10.1002/mrm.1910380604. [DOI] [PubMed] [Google Scholar]
- Yang Y., Frank J. A., Hou L., Ye F. Q., McLaughlin A. C., Duyn J. H. Multislice imaging of quantitative cerebral perfusion with pulsed arterial spin labeling. Magn Reson Med. 1998 May;39(5):825–832. doi: 10.1002/mrm.1910390520. [DOI] [PubMed] [Google Scholar]
- Yang Y., Glover G. H., van Gelderen P., Mattay V. S., Santha A. K., Sexton R. H., Ramsey N. F., Moonen C. T., Weinberger D. R., Frank J. A. Fast 3D functional magnetic resonance imaging at 1.5 T with spiral acquisition. Magn Reson Med. 1996 Oct;36(4):620–626. doi: 10.1002/mrm.1910360418. [DOI] [PubMed] [Google Scholar]
- Yang Y., Glover G. H., van Gelderen P., Patel A. C., Mattay V. S., Frank J. A., Duyn J. H. A comparison of fast MR scan techniques for cerebral activation studies at 1.5 tesla. Magn Reson Med. 1998 Jan;39(1):61–67. doi: 10.1002/mrm.1910390111. [DOI] [PubMed] [Google Scholar]
- Zhong J., Kennan R. P., Fulbright R. K., Gore J. C. Quantification of intravascular and extravascular contributions to BOLD effects induced by alteration in oxygenation or intravascular contrast agents. Magn Reson Med. 1998 Oct;40(4):526–536. doi: 10.1002/mrm.1910400405. [DOI] [PubMed] [Google Scholar]
- Zhu X. H., Kim S. G., Andersen P., Ogawa S., Uğurbil K., Chen W. Simultaneous oxygenation and perfusion imaging study of functional activity in primary visual cortex at different visual stimulation frequency: quantitative correlation between BOLD and CBF changes. Magn Reson Med. 1998 Nov;40(5):703–711. doi: 10.1002/mrm.1910400510. [DOI] [PubMed] [Google Scholar]