Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jul 29;354(1387):1125–1133. doi: 10.1098/rstb.1999.0468

Electroencephalographic imaging of higher brain function.

A Gevins 1, M E Smith 1, L K McEvoy 1, H Leong 1, J Le 1
PMCID: PMC1692636  PMID: 10466140

Abstract

High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

Full Text

The Full Text of this article is available as a PDF (578.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAZIER M. A. B., CASBY J. U. Cross-correlation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr Clin Neurophysiol. 1952 May;4(2):201–211. doi: 10.1016/0013-4694(52)90010-2. [DOI] [PubMed] [Google Scholar]
  2. Bressler S. L., Coppola R., Nakamura R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature. 1993 Nov 11;366(6451):153–156. doi: 10.1038/366153a0. [DOI] [PubMed] [Google Scholar]
  3. Callaway E., Harris P. R. Coupling between cortical potentials from different areas. Science. 1974 Mar 1;183(4127):873–875. doi: 10.1126/science.183.4127.873. [DOI] [PubMed] [Google Scholar]
  4. Cohen D., Cuffin B. N. EEG versus MEG localization accuracy: theory and experiment. Brain Topogr. 1991 Winter;4(2):95–103. doi: 10.1007/BF01132766. [DOI] [PubMed] [Google Scholar]
  5. Freeman W. J., Skarda C. A. Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res. 1985 Dec;357(3):147–175. doi: 10.1016/0165-0173(85)90022-0. [DOI] [PubMed] [Google Scholar]
  6. George J. S., Aine C. J., Mosher J. C., Schmidt D. M., Ranken D. M., Schlitt H. A., Wood C. C., Lewine J. D., Sanders J. A., Belliveau J. W. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol. 1995 Sep;12(5):406–431. doi: 10.1097/00004691-199509010-00002. [DOI] [PubMed] [Google Scholar]
  7. Gevins A. S., Bressler S. L., Morgan N. H., Cutillo B. A., White R. M., Greer D. S., Illes J. Event-related covariances during a bimanual visuomotor task. I. Methods and analysis of stimulus- and response-locked data. Electroencephalogr Clin Neurophysiol. 1989 Jan-Feb;74(1):58–75. doi: 10.1016/0168-5597(89)90052-x. [DOI] [PubMed] [Google Scholar]
  8. Gevins A. S., Cutillo B. A., Bressler S. L., Morgan N. H., White R. M., Illes J., Greer D. S. Event-related covariances during a bimanual visuomotor task. II. Preparation and feedback. Electroencephalogr Clin Neurophysiol. 1989 Mar-Apr;74(2):147–160. doi: 10.1016/0168-5597(89)90020-8. [DOI] [PubMed] [Google Scholar]
  9. Gevins A. S., Doyle J. C., Cutillo B. A., Schaffer R. E., Tannehill R. S., Ghannam J. H., Gilcrease V. A., Yeager C. L. Electrical potentials in human brain during cognition: new method reveals dynamic patterns of correlation. Science. 1981 Aug 21;213(4510):918–922. doi: 10.1126/science.7256287. [DOI] [PubMed] [Google Scholar]
  10. Gevins A. S., Morgan N. H., Bressler S. L., Cutillo B. A., White R. M., Illes J., Greer D. S., Doyle J. C., Zeitlin G. M. Human neuroelectric patterns predict performance accuracy. Science. 1987 Jan 30;235(4788):580–585. doi: 10.1126/science.3810158. [DOI] [PubMed] [Google Scholar]
  11. Gevins A. S., Schaffer R. E., Doyle J. C., Cutillo B. A., Tannehill R. S., Bressler S. L. Shadows of thought: shifting lateralization of human brain electrical patterns during brief visuomotor task. Science. 1983 Apr 1;220(4592):97–99. doi: 10.1126/science.6828886. [DOI] [PubMed] [Google Scholar]
  12. Gevins A., Brickett P., Costales B., Le J., Reutter B. Beyond topographic mapping: towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs. Brain Topogr. 1990 Fall;3(1):53–64. doi: 10.1007/BF01128862. [DOI] [PubMed] [Google Scholar]
  13. Gevins A., Cutillo B., Desmond J., Ward M., Bressler S., Barbero N., Laxer K. Subdural grid recordings of distributed neocortical networks involved with somatosensory discrimination. Electroencephalogr Clin Neurophysiol. 1994 Jul;92(4):282–290. doi: 10.1016/0168-5597(94)90096-5. [DOI] [PubMed] [Google Scholar]
  14. Gevins A., Cutillo B., Smith M. E. Regional modulation of high resolution evoked potentials during verbal and non-verbal matching tasks. Electroencephalogr Clin Neurophysiol. 1995 Feb;94(2):129–147. doi: 10.1016/0013-4694(94)00261-i. [DOI] [PubMed] [Google Scholar]
  15. Gevins A., Le J., Brickett P., Reutter B., Desmond J. Seeing through the skull: advanced EEGs use MRIs to accurately measure cortical activity from the scalp. Brain Topogr. 1991 Winter;4(2):125–131. doi: 10.1007/BF01132769. [DOI] [PubMed] [Google Scholar]
  16. Gevins A., Le J., Martin N. K., Brickett P., Desmond J., Reutter B. High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol. 1994 May;90(5):337–358. doi: 10.1016/0013-4694(94)90050-7. [DOI] [PubMed] [Google Scholar]
  17. Gevins A., Leong H., Du R., Smith M. E., Le J., DuRousseau D., Zhang J., Libove J. Towards measurement of brain function in operational environments. Biol Psychol. 1995 May;40(1-2):169–186. doi: 10.1016/0301-0511(95)05105-8. [DOI] [PubMed] [Google Scholar]
  18. Gevins A., Smith M. E., Le J., Leong H., Bennett J., Martin N., McEvoy L., Du R., Whitfield S. High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalogr Clin Neurophysiol. 1996 Apr;98(4):327–348. doi: 10.1016/0013-4694(96)00288-x. [DOI] [PubMed] [Google Scholar]
  19. Gevins A., Smith M. E., Leong H., McEvoy L., Whitfield S., Du R., Rush G. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Hum Factors. 1998 Mar;40(1):79–91. doi: 10.1518/001872098779480578. [DOI] [PubMed] [Google Scholar]
  20. Gevins A., Smith M. E., McEvoy L., Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex. 1997 Jun;7(4):374–385. doi: 10.1093/cercor/7.4.374. [DOI] [PubMed] [Google Scholar]
  21. Gorodnitsky I. F., George J. S., Rao B. D. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231–251. doi: 10.1016/0013-4694(95)00107-a. [DOI] [PubMed] [Google Scholar]
  22. Grave de Peralta-Menendez R., Gonzalez-Andino S. L. A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Trans Biomed Eng. 1998 Apr;45(4):440–448. doi: 10.1109/10.664200. [DOI] [PubMed] [Google Scholar]
  23. Gray C. M., König P., Engel A. K., Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989 Mar 23;338(6213):334–337. doi: 10.1038/338334a0. [DOI] [PubMed] [Google Scholar]
  24. Heinze H. J., Mangun G. R., Burchert W., Hinrichs H., Scholz M., Münte T. F., Gös A., Scherg M., Johannes S., Hundeshagen H. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature. 1994 Dec 8;372(6506):543–546. doi: 10.1038/372543a0. [DOI] [PubMed] [Google Scholar]
  25. Koles Z. J. Trends in EEG source localization. Electroencephalogr Clin Neurophysiol. 1998 Feb;106(2):127–137. doi: 10.1016/s0013-4694(97)00115-6. [DOI] [PubMed] [Google Scholar]
  26. Le J., Gevins A. Method to reduce blur distortion from EEG's using a realistic head model. IEEE Trans Biomed Eng. 1993 Jun;40(6):517–528. doi: 10.1109/10.237671. [DOI] [PubMed] [Google Scholar]
  27. Le J., Menon V., Gevins A. Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalogr Clin Neurophysiol. 1994 Sep;92(5):433–441. doi: 10.1016/0168-5597(94)90021-3. [DOI] [PubMed] [Google Scholar]
  28. Leahy R. M., Mosher J. C., Spencer M. E., Huang M. X., Lewine J. D. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):159–173. doi: 10.1016/s0013-4694(98)00057-1. [DOI] [PubMed] [Google Scholar]
  29. Llinás R., Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2078–2081. doi: 10.1073/pnas.90.5.2078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lopes da Silva F., Pijn J. P., Boeijinga P. Interdependence of EEG signals: linear vs. nonlinear associations and the significance of time delays and phase shifts. Brain Topogr. 1989 Fall-Winter;2(1-2):9–18. doi: 10.1007/BF01128839. [DOI] [PubMed] [Google Scholar]
  31. Mangun G. R., Buonocore M. H., Girelli M., Jha A. P. ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp. 1998;6(5-6):383–389. doi: 10.1002/(SICI)1097-0193(1998)6:5/6<383::AID-HBM10>3.0.CO;2-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McEvoy L. K., Smith M. E., Gevins A. Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cereb Cortex. 1998 Oct-Nov;8(7):563–574. doi: 10.1093/cercor/8.7.563. [DOI] [PubMed] [Google Scholar]
  33. Menon V., Freeman W. J., Cutillo B. A., Desmond J. E., Ward M. F., Bressler S. L., Laxer K. D., Barbaro N., Gevins A. S. Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr Clin Neurophysiol. 1996 Feb;98(2):89–102. doi: 10.1016/0013-4694(95)00206-5. [DOI] [PubMed] [Google Scholar]
  34. Miltner W., Braun C., Johnson R., Jr, Simpson G. V., Ruchkin D. S. A test of brain electrical source analysis (BESA): a simulation study. Electroencephalogr Clin Neurophysiol. 1994 Oct;91(4):295–310. doi: 10.1016/0013-4694(94)90193-7. [DOI] [PubMed] [Google Scholar]
  35. Mosher J. C., Lewis P. S., Leahy R. M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng. 1992 Jun;39(6):541–557. doi: 10.1109/10.141192. [DOI] [PubMed] [Google Scholar]
  36. Nunez P. L., Pilgreen K. L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J Clin Neurophysiol. 1991 Oct;8(4):397–413. [PubMed] [Google Scholar]
  37. Scherg M., Von Cramon D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol. 1985 Jan;62(1):32–44. doi: 10.1016/0168-5597(85)90033-4. [DOI] [PubMed] [Google Scholar]
  38. Sereno M. I. Brain mapping in animals and humans. Curr Opin Neurobiol. 1998 Apr;8(2):188–194. doi: 10.1016/s0959-4388(98)80139-6. [DOI] [PubMed] [Google Scholar]
  39. Simpson G. V., Pflieger M. E., Foxe J. J., Ahlfors S. P., Vaughan H. G., Jr, Hrabe J., Ilmoniemi R. J., Lantos G. Dynamic neuroimaging of brain function. J Clin Neurophysiol. 1995 Sep;12(5):432–449. doi: 10.1097/00004691-199509010-00003. [DOI] [PubMed] [Google Scholar]
  40. Smith M. E., McEvoy L. K., Gevins A. Neurophysiological indices of strategy development and skill acquisition. Brain Res Cogn Brain Res. 1999 Jan;7(3):389–404. doi: 10.1016/s0926-6410(98)00043-3. [DOI] [PubMed] [Google Scholar]
  41. Tesche C. D., Uusitalo M. A., Ilmoniemi R. J., Huotilainen M., Kajola M., Salonen O. Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol. 1995 Sep;95(3):189–200. doi: 10.1016/0013-4694(95)00064-6. [DOI] [PubMed] [Google Scholar]
  42. Wang J. Z., Williamson S. J., Kaufman L. Magnetic source imaging based on the minimum-norm least-squares inverse. Brain Topogr. 1993 Summer;5(4):365–371. doi: 10.1007/BF01128692. [DOI] [PubMed] [Google Scholar]
  43. van den Broek S. P., Reinders F., Donderwinkel M., Peters M. J. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998 Jun;106(6):522–534. doi: 10.1016/s0013-4694(97)00147-8. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES