Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jul 29;354(1387):1261–1281. doi: 10.1098/rstb.1999.0478

Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference.

K M Petersson 1, T E Nichols 1, J B Poline 1, A P Holmes 1
PMCID: PMC1692643  PMID: 10466150

Abstract

The field of functional neuroimaging (FNI) methodology has developed into a mature but evolving area of knowledge and its applications have been extensive. A general problem in the analysis of FNI data is finding a signal embedded in noise. This is sometimes called signal detection. Signal detection theory focuses in general on issues relating to the optimization of conditions for separating the signal from noise. When methods from probability theory and mathematical statistics are directly applied in this procedure it is also called statistical inference. In this paper we briefly discuss some aspects of signal detection theory relevant to FNI and, in addition, some common approaches to statistical inference used in FNI. Low-pass filtering in relation to functional-anatomical variability and some effects of filtering on signal detection of interest to FNI are discussed. Also, some general aspects of hypothesis testing and statistical inference are discussed. This includes the need for characterizing the signal in data when the null hypothesis is rejected, the problem of multiple comparisons that is central to FNI data analysis, omnibus tests and some issues related to statistical power in the context of FNI. In turn, random field, scale space, non-parametric and Monte Carlo approaches are reviewed, representing the most common approaches to statistical inference used in FNI. Complementary to these issues an overview and discussion of non-inferential descriptive methods, common statistical models and the problem of model selection is given in a companion paper. In general, model selection is an important prelude to subsequent statistical inference. The emphasis in both papers is on the assumptions and inherent limitations of the methods presented. Most of the methods described here generally serve their purposes well when the inherent assumptions and limitations are taken into account. Significant differences in results between different methods are most apparent in extreme parameter ranges, for example at low effective degrees of freedom or at small spatial autocorrelation. In such situations or in situations when assumptions and approximations are seriously violated it is of central importance to choose the most suitable method in order to obtain valid results.

Full Text

The Full Text of this article is available as a PDF (307.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre G. K., Zarahn E., D'Esposito M. A critique of the use of the Kolmogorov-Smirnov (KS) statistic for the analysis of BOLD fMRI data. Magn Reson Med. 1998 Mar;39(3):500–505. doi: 10.1002/mrm.1910390322. [DOI] [PubMed] [Google Scholar]
  2. Aguirre G. K., Zarahn E., D'Esposito M. Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. Neuroimage. 1997 Apr;5(3):199–212. doi: 10.1006/nimg.1997.0264. [DOI] [PubMed] [Google Scholar]
  3. Ashburner J., Neelin P., Collins D. L., Evans A., Friston K. Incorporating prior knowledge into image registration. Neuroimage. 1997 Nov;6(4):344–352. doi: 10.1006/nimg.1997.0299. [DOI] [PubMed] [Google Scholar]
  4. Bullmore E., Brammer M., Williams S. C., Rabe-Hesketh S., Janot N., David A., Mellers J., Howard R., Sham P. Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med. 1996 Feb;35(2):261–277. doi: 10.1002/mrm.1910350219. [DOI] [PubMed] [Google Scholar]
  5. Crivello F., Tzourio N., Poline J. B., Woods R. P., Mazziotta J. C., Mazoyer B. Intersubject variability in functional neuroanatomy of silent verb generation: assessment by a new activation detection algorithm based on amplitude and size information. Neuroimage. 1995 Dec;2(4):253–263. doi: 10.1006/nimg.1995.1033. [DOI] [PubMed] [Google Scholar]
  6. Dale A. M., Fischl B., Sereno M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999 Feb;9(2):179–194. doi: 10.1006/nimg.1998.0395. [DOI] [PubMed] [Google Scholar]
  7. Descombes X., Kruggel F., von Cramon D. Y. fMRI signal restoration using a spatio-temporal Markov Random Field preserving transitions. Neuroimage. 1998 Nov;8(4):340–349. doi: 10.1006/nimg.1998.0372. [DOI] [PubMed] [Google Scholar]
  8. Fischl B., Sereno M. I., Dale A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999 Feb;9(2):195–207. doi: 10.1006/nimg.1998.0396. [DOI] [PubMed] [Google Scholar]
  9. Forman S. D., Cohen J. D., Fitzgerald M., Eddy W. F., Mintun M. A., Noll D. C. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med. 1995 May;33(5):636–647. doi: 10.1002/mrm.1910330508. [DOI] [PubMed] [Google Scholar]
  10. Fox P. T., Mintun M. A. Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. J Nucl Med. 1989 Feb;30(2):141–149. [PubMed] [Google Scholar]
  11. Fox P. T., Mintun M. A., Reiman E. M., Raichle M. E. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab. 1988 Oct;8(5):642–653. doi: 10.1038/jcbfm.1988.111. [DOI] [PubMed] [Google Scholar]
  12. Fox P. T., Pardo J. V. Does inter-subject variability in cortical functional organization increase with neural 'distance' from the periphery? Ciba Found Symp. 1991;163:125–144. doi: 10.1002/9780470514184.ch8. [DOI] [PubMed] [Google Scholar]
  13. Frackowiak R. S., Zeki S., Poline J. B., Friston K. J. A critique of a new analysis proposed for functional neuroimaging. Eur J Neurosci. 1996 Nov;8(11):2229–2231. doi: 10.1111/j.1460-9568.1996.tb01185.x. [DOI] [PubMed] [Google Scholar]
  14. Friston K. J., Frith C. D., Liddle P. F., Dolan R. J., Lammertsma A. A., Frackowiak R. S. The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab. 1990 Jul;10(4):458–466. doi: 10.1038/jcbfm.1990.88. [DOI] [PubMed] [Google Scholar]
  15. Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690–699. doi: 10.1038/jcbfm.1991.122. [DOI] [PubMed] [Google Scholar]
  16. Friston K. J., Holmes A., Poline J. B., Price C. J., Frith C. D. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage. 1996 Dec;4(3 Pt 1):223–235. doi: 10.1006/nimg.1996.0074. [DOI] [PubMed] [Google Scholar]
  17. Grachev I. D., Berdichevsky D., Rauch S. L., Heckers S., Kennedy D. N., Caviness V. S., Alpert N. M. A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. Neuroimage. 1999 Feb;9(2):250–268. doi: 10.1006/nimg.1998.0397. [DOI] [PubMed] [Google Scholar]
  18. Hajnal J. V., Myers R., Oatridge A., Schwieso J. E., Young I. R., Bydder G. M. Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med. 1994 Mar;31(3):283–291. doi: 10.1002/mrm.1910310307. [DOI] [PubMed] [Google Scholar]
  19. Hasnain M. K., Fox P. T., Woldorff M. G. Intersubject variability of functional areas in the human visual cortex. Hum Brain Mapp. 1998;6(4):301–315. doi: 10.1002/(SICI)1097-0193(1998)6:4<301::AID-HBM8>3.0.CO;2-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holmes A. P., Blair R. C., Watson J. D., Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab. 1996 Jan;16(1):7–22. doi: 10.1097/00004647-199601000-00002. [DOI] [PubMed] [Google Scholar]
  21. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  22. Koenderink J. J. The structure of images. Biol Cybern. 1984;50(5):363–370. doi: 10.1007/BF00336961. [DOI] [PubMed] [Google Scholar]
  23. Ledberg A., Akerman S., Roland P. E. Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage. 1998 Aug;8(2):113–128. doi: 10.1006/nimg.1998.0336. [DOI] [PubMed] [Google Scholar]
  24. Petersson K. M. Comments on a Monte Carlo approach to the analysis of functional neuroimaging data. Neuroimage. 1998 Aug;8(2):108–112. doi: 10.1006/nimg.1998.0375. [DOI] [PubMed] [Google Scholar]
  25. Poline J. B., Mazoyer B. M. Analysis of individual positron emission tomography activation maps by detection of high signal-to-noise-ratio pixel clusters. J Cereb Blood Flow Metab. 1993 May;13(3):425–437. doi: 10.1038/jcbfm.1993.57. [DOI] [PubMed] [Google Scholar]
  26. Poline J. B., Mazoyer B. M. Enhanced detection in brain activation maps using a multifiltering approach. J Cereb Blood Flow Metab. 1994 Jul;14(4):639–642. doi: 10.1038/jcbfm.1994.79. [DOI] [PubMed] [Google Scholar]
  27. Poline J. B., Vandenberghe R., Holmes A. P., Friston K. J., Frackowiak R. S. Reproducibility of PET activation studies: lessons from a multi-center European experiment. EU concerted action on functional imaging. Neuroimage. 1996 Aug;4(1):34–54. doi: 10.1006/nimg.1996.0027. [DOI] [PubMed] [Google Scholar]
  28. Poline J. B., Worsley K. J., Evans A. C., Friston K. J. Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage. 1997 Feb;5(2):83–96. doi: 10.1006/nimg.1996.0248. [DOI] [PubMed] [Google Scholar]
  29. Poline J. B., Worsley K. J., Holmes A. P., Frackowiak R. S., Friston K. J. Estimating smoothness in statistical parametric maps: variability of p values. J Comput Assist Tomogr. 1995 Sep-Oct;19(5):788–796. doi: 10.1097/00004728-199509000-00017. [DOI] [PubMed] [Google Scholar]
  30. Purdon P. L., Weisskoff R. M. Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp. 1998;6(4):239–249. doi: 10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.0.CO;2-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramsey N. F., Kirkby B. S., Van Gelderen P., Berman K. F., Duyn J. H., Frank J. A., Mattay V. S., Van Horn J. D., Esposito G., Moonen C. T. Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab. 1996 Sep;16(5):755–764. doi: 10.1097/00004647-199609000-00001. [DOI] [PubMed] [Google Scholar]
  32. Regis J., Mangin J. F., Frouin V., Sastre F., Peragut J. C., Samson Y. Generic model for the localization of the cerebral cortex and preoperative multimodal integration in epilepsy surgery. Stereotact Funct Neurosurg. 1995;65(1-4):72–80. doi: 10.1159/000098900. [DOI] [PubMed] [Google Scholar]
  33. Roland P. E., Gulyás B. Assumptions and validations of statistical tests for functional neuroimaging. Eur J Neurosci. 1996 Nov;8(11):2232–2235. doi: 10.1111/j.1460-9568.1996.tb01186.x. [DOI] [PubMed] [Google Scholar]
  34. Senda M., Ishii K., Oda K., Sadato N., Kawashima R., Sugiura M., Kanno I., Ardekani B., Minoshima S., Tatsumi I. Influence of ANOVA design and anatomical standardization on statistical mapping for PET activation. Neuroimage. 1998 Oct;8(3):283–301. doi: 10.1006/nimg.1998.0370. [DOI] [PubMed] [Google Scholar]
  35. Taylor S. F., Minoshima S., Koeppe R. A. Instability of localization of cerebral blood flow activation foci with parametric maps. J Cereb Blood Flow Metab. 1993 Nov;13(6):1040–1042. doi: 10.1038/jcbfm.1993.134. [DOI] [PubMed] [Google Scholar]
  36. Van Horn J. D., Ellmore T. M., Esposito G., Berman K. F. Mapping voxel-based statistical power on parametric images. Neuroimage. 1998 Feb;7(2):97–107. doi: 10.1006/nimg.1997.0317. [DOI] [PubMed] [Google Scholar]
  37. Worsley K. J., Evans A. C., Marrett S., Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992 Nov;12(6):900–918. doi: 10.1038/jcbfm.1992.127. [DOI] [PubMed] [Google Scholar]
  38. Worsley K. J., Friston K. J. Analysis of fMRI time-series revisited--again. Neuroimage. 1995 Sep;2(3):173–181. doi: 10.1006/nimg.1995.1023. [DOI] [PubMed] [Google Scholar]
  39. Worsley K. J., Poline J. B., Friston K. J., Evans A. C. Characterizing the response of PET and fMRI data using multivariate linear models. Neuroimage. 1997 Nov;6(4):305–319. doi: 10.1006/nimg.1997.0294. [DOI] [PubMed] [Google Scholar]
  40. Worsley K. J., Poline J. B., Vandal A. C., Friston K. J. Tests for distributed, nonfocal brain activations. Neuroimage. 1995 Sep;2(3):183–194. doi: 10.1006/nimg.1995.1024. [DOI] [PubMed] [Google Scholar]
  41. Zarahn E., Aguirre G. K., D'Esposito M. Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage. 1997 Apr;5(3):179–197. doi: 10.1006/nimg.1997.0263. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES