Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Oct 29;354(1390):1641–1647. doi: 10.1098/rstb.1999.0509

Axon damage and repair in multiple sclerosis.

V H Perry 1, D C Anthony 1
PMCID: PMC1692675  PMID: 10603617

Abstract

It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and active-chronic lesions is associated with regions of maximal density of infiltrating macrophages. Axon injury within the MS lesion will result in both Wallerian degeneration of the axon and also retrograde degeneration of the cell body. The functional consequences of the axon injury will depend upon numbers of axons injured and the topographical organization of the fibres coursing through the lesion. The molecular mechanisms by which the recruited leucocytes damage or transect the axons are not known. However, investigations in the Wld mutant mouse with very slow Wallerian degeneration demonstrate that axon degeneration is not simply a passive disintegration of the axon but has clear parallels with the active processes of programmed cell death. The presence of early axon injury and the consequences of an ever increasing load of neuronal damage has important implications not only for when therapy should be initiated in MS but also the therapeutic target.

Full Text

The Full Text of this article is available as a PDF (249.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Clarke D. B., Jelsma T. N., Kittlerova P., Friedman H. C., Bray G. M. Effects of neurotrophins on the survival and regrowth of injured retinal neurons. Ciba Found Symp. 1996;196:135–148. doi: 10.1002/9780470514863.ch10. [DOI] [PubMed] [Google Scholar]
  2. Anthony D. C., Miller K. M., Fearn S., Townsend M. J., Opdenakker G., Wells G. M., Clements J. M., Chandler S., Gearing A. J., Perry V. H. Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS. J Neuroimmunol. 1998 Jul 1;87(1-2):62–72. doi: 10.1016/s0165-5728(98)00046-0. [DOI] [PubMed] [Google Scholar]
  3. Buckmaster E. A., Perry V. H., Brown M. C. The rate of Wallerian degeneration in cultured neurons from wild type and C57BL/WldS mice depends on time in culture and may be extended in the presence of elevated K+ levels. Eur J Neurosci. 1995 Jul 1;7(7):1596–1602. doi: 10.1111/j.1460-9568.1995.tb01155.x. [DOI] [PubMed] [Google Scholar]
  4. Bürgel U., Mecklenburg I., Blohm U., Zilles K. Histological visualization of long fiber tracts in the white matter of adult human brains. J Hirnforsch. 1997;38(3):397–404. [PubMed] [Google Scholar]
  5. Coleman M. P., Conforti L., Buckmaster E. A., Tarlton A., Ewing R. M., Brown M. C., Lyon M. F., Perry V. H. An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9985–9990. doi: 10.1073/pnas.95.17.9985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curcio C. A., Allen K. A. Topography of ganglion cells in human retina. J Comp Neurol. 1990 Oct 1;300(1):5–25. doi: 10.1002/cne.903000103. [DOI] [PubMed] [Google Scholar]
  7. Davie C. A., Barker G. J., Thompson A. J., Tofts P. S., McDonald W. I., Miller D. H. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):736–742. doi: 10.1136/jnnp.63.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davie C. A., Hawkins C. P., Barker G. J., Brennan A., Tofts P. S., Miller D. H., McDonald W. I. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain. 1994 Feb;117(Pt 1):49–58. doi: 10.1093/brain/117.1.49. [DOI] [PubMed] [Google Scholar]
  9. De Stefano N., Matthews P. M., Narayanan S., Francis G. S., Antel J. P., Arnold D. L. Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology. 1997 Oct;49(4):1138–1141. doi: 10.1212/wnl.49.4.1138. [DOI] [PubMed] [Google Scholar]
  10. Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H. Axonal damage in acute multiple sclerosis lesions. Brain. 1997 Mar;120(Pt 3):393–399. doi: 10.1093/brain/120.3.393. [DOI] [PubMed] [Google Scholar]
  11. Fink R. P., Heimer L. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 1967 Apr;4(4):369–374. doi: 10.1016/0006-8993(67)90166-7. [DOI] [PubMed] [Google Scholar]
  12. Fitch M. T., Silver J. Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tissue Res. 1997 Nov;290(2):379–384. doi: 10.1007/s004410050944. [DOI] [PubMed] [Google Scholar]
  13. Fu L., Matthews P. M., De Stefano N., Worsley K. J., Narayanan S., Francis G. S., Antel J. P., Wolfson C., Arnold D. L. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain. 1998 Jan;121(Pt 1):103–113. doi: 10.1093/brain/121.1.103. [DOI] [PubMed] [Google Scholar]
  14. Gentleman S. M., Roberts G. W., Gennarelli T. A., Maxwell W. L., Adams J. H., Kerr S., Graham D. I. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol. 1995;89(6):537–543. doi: 10.1007/BF00571509. [DOI] [PubMed] [Google Scholar]
  15. George R., Griffin J. W. The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol. 1994 Nov;23(11):657–667. doi: 10.1007/BF01181641. [DOI] [PubMed] [Google Scholar]
  16. Hartung H. P., Kiefer R., Gold R., Toyka K. V. Autoimmunity in the peripheral nervous system. Baillieres Clin Neurol. 1996 Mar;5(1):1–45. [PubMed] [Google Scholar]
  17. Horton J. C., Greenwood M. M., Hubel D. H. Non-retinotopic arrangement of fibres in cat optic nerve. Nature. 1979 Dec 13;282(5740):720–722. doi: 10.1038/282720a0. [DOI] [PubMed] [Google Scholar]
  18. Losseff N. A., Wang L., Lai H. M., Yoo D. S., Gawne-Cain M. L., McDonald W. I., Miller D. H., Thompson A. J. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain. 1996 Dec;119(Pt 6):2009–2019. doi: 10.1093/brain/119.6.2009. [DOI] [PubMed] [Google Scholar]
  19. Losseff N. A., Webb S. L., O'Riordan J. I., Page R., Wang L., Barker G. J., Tofts P. S., McDonald W. I., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996 Jun;119(Pt 3):701–708. doi: 10.1093/brain/119.3.701. [DOI] [PubMed] [Google Scholar]
  20. Lunn E. R., Perry V. H., Brown M. C., Rosen H., Gordon S. Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci. 1989;1(1):27–33. doi: 10.1111/j.1460-9568.1989.tb00771.x. [DOI] [PubMed] [Google Scholar]
  21. Matyszak M. K., Perry V. H. Demyelination in the central nervous system following a delayed-type hypersensitivity response to bacillus Calmette-Guérin. Neuroscience. 1995 Feb;64(4):967–977. doi: 10.1016/0306-4522(94)00448-e. [DOI] [PubMed] [Google Scholar]
  22. Matyszak M. K., Townsend M. J., Perry V. H. Ultrastructural studies of an immune-mediated inflammatory response in the CNS parenchyma directed against a non-CNS antigen. Neuroscience. 1997 May;78(2):549–560. doi: 10.1016/s0306-4522(96)00578-7. [DOI] [PubMed] [Google Scholar]
  23. Miklossy J., Van der Loos H. The long-distance effects of brain lesions: visualization of myelinated pathways in the human brain using polarizing and fluorescence microscopy. J Neuropathol Exp Neurol. 1991 Jan;50(1):1–15. doi: 10.1097/00005072-199101000-00001. [DOI] [PubMed] [Google Scholar]
  24. Molnár Z., Blakemore C. How do thalamic axons find their way to the cortex? Trends Neurosci. 1995 Sep;18(9):389–397. doi: 10.1016/0166-2236(95)93935-q. [DOI] [PubMed] [Google Scholar]
  25. NAUTA W. J., GYGAX P. A. Silver impregnation of degenerating axons in the central nervous system: a modified technic. Stain Technol. 1954 Mar;29(2):91–93. doi: 10.3109/10520295409115448. [DOI] [PubMed] [Google Scholar]
  26. Nixon R. A., Quackenbush R., Vitto A. Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP. J Neurosci. 1986 May;6(5):1252–1263. doi: 10.1523/JNEUROSCI.06-05-01252.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perry V. H., Brown M. C., Lunn E. R. Very Slow Retrograde and Wallerian Degeneration in the CNS of C57BL/Ola Mice. Eur J Neurosci. 1991;3(1):102–105. doi: 10.1111/j.1460-9568.1991.tb00815.x. [DOI] [PubMed] [Google Scholar]
  28. Povlishock J. T., Jenkins L. W. Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol. 1995 Oct;5(4):415–426. doi: 10.1111/j.1750-3639.1995.tb00620.x. [DOI] [PubMed] [Google Scholar]
  29. Raff M. C. Social controls on cell survival and cell death. Nature. 1992 Apr 2;356(6368):397–400. doi: 10.1038/356397a0. [DOI] [PubMed] [Google Scholar]
  30. Raine C. S., Barnett L. B., Brown A., Behar T., McFarlin D. E. Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice. Lab Invest. 1980 Aug;43(2):150–157. [PubMed] [Google Scholar]
  31. Raine C. S., Cross A. H. Axonal dystrophy as a consequence of long-term demyelination. Lab Invest. 1989 May;60(5):714–725. [PubMed] [Google Scholar]
  32. Redford E. J., Kapoor R., Smith K. J. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain. 1997 Dec;120(Pt 12):2149–2157. doi: 10.1093/brain/120.12.2149. [DOI] [PubMed] [Google Scholar]
  33. Schwab M. E. Molecules inhibiting neurite growth: a minireview. Neurochem Res. 1996 Jul;21(7):755–761. doi: 10.1007/BF02532297. [DOI] [PubMed] [Google Scholar]
  34. Sherriff F. E., Bridges L. R., Gentleman S. M., Sivaloganathan S., Wilson S. Markers of axonal injury in post mortem human brain. Acta Neuropathol. 1994;88(5):433–439. doi: 10.1007/BF00389495. [DOI] [PubMed] [Google Scholar]
  35. Shuman S. L., Bresnahan J. C., Beattie M. S. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res. 1997 Dec 1;50(5):798–808. doi: 10.1002/(SICI)1097-4547(19971201)50:5<798::AID-JNR16>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  36. Stys P. K., Waxman S. G., Ransom B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci. 1992 Feb;12(2):430–439. doi: 10.1523/JNEUROSCI.12-02-00430.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998 Jan 29;338(5):278–285. doi: 10.1056/NEJM199801293380502. [DOI] [PubMed] [Google Scholar]
  38. Urenjak J., Williams S. R., Gadian D. G., Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993 Mar;13(3):981–989. doi: 10.1523/JNEUROSCI.13-03-00981.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES