Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Dec 29;354(1392):2027–2052. doi: 10.1098/rstb.1999.0542

The past, the future and the biology of memory storage.

E R Kandel 1, C Pittenger 1
PMCID: PMC1692699  PMID: 10670023

Abstract

We here briefly review a century of accomplishments in studying memory storage and delineate the two major questions that have dominated thinking in this area: the systems question of memory, which concerns where in the brain storage occurs; and the molecular question of memory, which concerns the mechanisms whereby memories are stored and maintained. We go on to consider the themes that memory research may be able to address in the 21st century. Finally, we reflect on the clinical and societal import of our increasing understanding of the mechanisms of memory, discussing possible therapeutic approaches to diseases that manifest with disruptions of learning and possible ethical implication of the ability, which is on the horizon, to ameliorate or even enhance human memory.

Full Text

The Full Text of this article is available as a PDF (678.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel T., Kandel E. Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Brain Res Rev. 1998 May;26(2-3):360–378. doi: 10.1016/s0165-0173(97)00050-7. [DOI] [PubMed] [Google Scholar]
  2. Ahn S., Ginty D. D., Linden D. J. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron. 1999 Jul;23(3):559–568. doi: 10.1016/s0896-6273(00)80808-9. [DOI] [PubMed] [Google Scholar]
  3. Alberini C. M., Ghirardi M., Metz R., Kandel E. R. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell. 1994 Mar 25;76(6):1099–1114. doi: 10.1016/0092-8674(94)90386-7. [DOI] [PubMed] [Google Scholar]
  4. Anagnostaras S. G., Maren S., Fanselow M. S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci. 1999 Feb 1;19(3):1106–1114. doi: 10.1523/JNEUROSCI.19-03-01106.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arancio O., Kiebler M., Lee C. J., Lev-Ram V., Tsien R. Y., Kandel E. R., Hawkins R. D. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell. 1996 Dec 13;87(6):1025–1035. doi: 10.1016/s0092-8674(00)81797-3. [DOI] [PubMed] [Google Scholar]
  6. Atkins C. M., Selcher J. C., Petraitis J. J., Trzaskos J. M., Sweatt J. D. The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1998 Nov;1(7):602–609. doi: 10.1038/2836. [DOI] [PubMed] [Google Scholar]
  7. Bach M. E., Barad M., Son H., Zhuo M., Lu Y. F., Shih R., Mansuy I., Hawkins R. D., Kandel E. R. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5280–5285. doi: 10.1073/pnas.96.9.5280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bacskai B. J., Hochner B., Mahaut-Smith M., Adams S. R., Kaang B. K., Kandel E. R., Tsien R. Y. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science. 1993 Apr 9;260(5105):222–226. doi: 10.1126/science.7682336. [DOI] [PubMed] [Google Scholar]
  9. Bailey C. H., Kandel E. R. Structural changes accompanying memory storage. Annu Rev Physiol. 1993;55:397–426. doi: 10.1146/annurev.ph.55.030193.002145. [DOI] [PubMed] [Google Scholar]
  10. Barnes C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979 Feb;93(1):74–104. doi: 10.1037/h0077579. [DOI] [PubMed] [Google Scholar]
  11. Bartsch D., Casadio A., Karl K. A., Serodio P., Kandel E. R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell. 1998 Oct 16;95(2):211–223. doi: 10.1016/s0092-8674(00)81752-3. [DOI] [PubMed] [Google Scholar]
  12. Bartsch D., Ghirardi M., Skehel P. A., Karl K. A., Herder S. P., Chen M., Bailey C. H., Kandel E. R. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell. 1995 Dec 15;83(6):979–992. doi: 10.1016/0092-8674(95)90213-9. [DOI] [PubMed] [Google Scholar]
  13. Blendy J. A., Kaestner K. H., Schmid W., Gass P., Schutz G. Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 1996 Mar 1;15(5):1098–1106. [PMC free article] [PubMed] [Google Scholar]
  14. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bolshakov V. Y., Golan H., Kandel E. R., Siegelbaum S. A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron. 1997 Sep;19(3):635–651. doi: 10.1016/s0896-6273(00)80377-3. [DOI] [PubMed] [Google Scholar]
  16. Bolshakov V. Y., Siegelbaum S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science. 1995 Sep 22;269(5231):1730–1734. doi: 10.1126/science.7569903. [DOI] [PubMed] [Google Scholar]
  17. Bontempi B., Laurent-Demir C., Destrade C., Jaffard R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature. 1999 Aug 12;400(6745):671–675. doi: 10.1038/23270. [DOI] [PubMed] [Google Scholar]
  18. Bourtchouladze R., Abel T., Berman N., Gordon R., Lapidus K., Kandel E. R. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem. 1998 Sep-Oct;5(4-5):365–374. [PMC free article] [PubMed] [Google Scholar]
  19. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Silva A. J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994 Oct 7;79(1):59–68. doi: 10.1016/0092-8674(94)90400-6. [DOI] [PubMed] [Google Scholar]
  20. Braha O., Dale N., Hochner B., Klein M., Abrams T. W., Kandel E. R. Second messengers involved in the two processes of presynaptic facilitation that contribute to sensitization and dishabituation in Aplysia sensory neurons. Proc Natl Acad Sci U S A. 1990 Mar;87(5):2040–2044. doi: 10.1073/pnas.87.5.2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brunelli M., Castellucci V., Kandel E. R. Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science. 1976 Dec 10;194(4270):1178–1181. doi: 10.1126/science.186870. [DOI] [PubMed] [Google Scholar]
  22. Buckner R. L., Kelley W. M., Petersen S. E. Frontal cortex contributes to human memory formation. Nat Neurosci. 1999 Apr;2(4):311–314. doi: 10.1038/7221. [DOI] [PubMed] [Google Scholar]
  23. Byrne J. H., Kandel E. R. Presynaptic facilitation revisited: state and time dependence. J Neurosci. 1996 Jan 15;16(2):425–435. doi: 10.1523/JNEUROSCI.16-02-00425.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Cahill L., Prins B., Weber M., McGaugh J. L. Beta-adrenergic activation and memory for emotional events. Nature. 1994 Oct 20;371(6499):702–704. doi: 10.1038/371702a0. [DOI] [PubMed] [Google Scholar]
  25. Calabresi P., Pisani A., Centonze D., Bernardi G. Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci Biobehav Rev. 1997 Jul;21(4):519–523. doi: 10.1016/s0149-7634(96)00029-2. [DOI] [PubMed] [Google Scholar]
  26. Carew T. J., Sahley C. L. Invertebrate learning and memory: from behavior to molecules. Annu Rev Neurosci. 1986;9:435–487. doi: 10.1146/annurev.ne.09.030186.002251. [DOI] [PubMed] [Google Scholar]
  27. Castellucci V. F., Frost W. N., Goelet P., Montarolo P. G., Schacher S., Morgan J. A., Blumenfeld H., Kandel E. R. Cell and molecular analysis of long-term sensitization in Aplysia. J Physiol (Paris) 1986;81(4):349–357. [PubMed] [Google Scholar]
  28. Castellucci V., Kandel E. R. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science. 1976 Dec 10;194(4270):1176–1178. doi: 10.1126/science.11560. [DOI] [PubMed] [Google Scholar]
  29. Clugnet M. C., LeDoux J. E. Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J Neurosci. 1990 Aug;10(8):2818–2824. doi: 10.1523/JNEUROSCI.10-08-02818.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Crick F., Mitchison G. The function of dream sleep. Nature. 1983 Jul 14;304(5922):111–114. doi: 10.1038/304111a0. [DOI] [PubMed] [Google Scholar]
  31. Davies A., Lumsden A. Identifying components of Max Factor. Neuron. 1999 Sep;24(1):1–2. doi: 10.1016/s0896-6273(00)80814-4. [DOI] [PubMed] [Google Scholar]
  32. Davis G. W., Schuster C. M., Goodman C. S. Genetic dissection of structural and functional components of synaptic plasticity. III. CREB is necessary for presynaptic functional plasticity. Neuron. 1996 Oct;17(4):669–679. doi: 10.1016/s0896-6273(00)80199-3. [DOI] [PubMed] [Google Scholar]
  33. Davis R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol Rev. 1996 Apr;76(2):299–317. doi: 10.1152/physrev.1996.76.2.299. [DOI] [PubMed] [Google Scholar]
  34. De Zeeuw C. I., Hansel C., Bian F., Koekkoek S. K., van Alphen A. M., Linden D. J., Oberdick J. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998 Mar;20(3):495–508. doi: 10.1016/s0896-6273(00)80990-3. [DOI] [PubMed] [Google Scholar]
  35. Denk W., Yuste R., Svoboda K., Tank D. W. Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol. 1996 Jun;6(3):372–378. doi: 10.1016/s0959-4388(96)80122-x. [DOI] [PubMed] [Google Scholar]
  36. Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995 Oct 13;270(5234):305–307. doi: 10.1126/science.270.5234.305. [DOI] [PubMed] [Google Scholar]
  37. English J. D., Sweatt J. D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem. 1996 Oct 4;271(40):24329–24332. doi: 10.1074/jbc.271.40.24329. [DOI] [PubMed] [Google Scholar]
  38. Flexner L. B., Flexner J. B., De La Haba G., Roberts R. B. Loss of memory as related to inhibition of cerebral protein synthesis. J Neurochem. 1965 Jul;12(7):535–541. doi: 10.1111/j.1471-4159.1965.tb04246.x. [DOI] [PubMed] [Google Scholar]
  39. Freeman F. M., Rose S. P., Scholey A. B. Two time windows of anisomycin-induced amnesia for passive avoidance training in the day-old chick. Neurobiol Learn Mem. 1995 May;63(3):291–295. doi: 10.1006/nlme.1995.1034. [DOI] [PubMed] [Google Scholar]
  40. Frey U., Morris R. G. Synaptic tagging and long-term potentiation. Nature. 1997 Feb 6;385(6616):533–536. doi: 10.1038/385533a0. [DOI] [PubMed] [Google Scholar]
  41. Gaffan D. Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review. Exp Brain Res. 1998 Nov;123(1-2):201–209. doi: 10.1007/s002210050562. [DOI] [PubMed] [Google Scholar]
  42. Gallagher M., Pelleymounter M. A. An age-related spatial learning deficit: choline uptake distinguishes "impaired" and "unimpaired" rats. Neurobiol Aging. 1988 Jul-Aug;9(4):363–369. doi: 10.1016/s0197-4580(88)80082-4. [DOI] [PubMed] [Google Scholar]
  43. Giese K. P., Fedorov N. B., Filipkowski R. K., Silva A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998 Feb 6;279(5352):870–873. doi: 10.1126/science.279.5352.870. [DOI] [PubMed] [Google Scholar]
  44. Glanzman D. L. The cellular basis of classical conditioning in Aplysia californica--it's less simple than you think. Trends Neurosci. 1995 Jan;18(1):30–36. doi: 10.1016/0166-2236(95)93947-v. [DOI] [PubMed] [Google Scholar]
  45. Graybiel A. M. Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol. 1995 Dec;5(6):733–741. doi: 10.1016/0959-4388(95)80100-6. [DOI] [PubMed] [Google Scholar]
  46. Graybiel A. M. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):119–136. doi: 10.1006/nlme.1998.3843. [DOI] [PubMed] [Google Scholar]
  47. Grotewiel M. S., Beck C. D., Wu K. H., Zhu X. R., Davis R. L. Integrin-mediated short-term memory in Drosophila. Nature. 1998 Jan 29;391(6666):455–460. doi: 10.1038/35079. [DOI] [PubMed] [Google Scholar]
  48. Gu Q. A., Bear M. F., Singer W. Blockade of NMDA-receptors prevents ocularity changes in kitten visual cortex after reversed monocular deprivation. Brain Res Dev Brain Res. 1989 Jun 1;47(2):281–288. doi: 10.1016/0165-3806(89)90183-1. [DOI] [PubMed] [Google Scholar]
  49. Hawkins R. D., Kandel E. R., Siegelbaum S. A. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu Rev Neurosci. 1993;16:625–665. doi: 10.1146/annurev.ne.16.030193.003205. [DOI] [PubMed] [Google Scholar]
  50. Hegde A. N., Inokuchi K., Pei W., Casadio A., Ghirardi M., Chain D. G., Martin K. C., Kandel E. R., Schwartz J. H. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell. 1997 Apr 4;89(1):115–126. doi: 10.1016/s0092-8674(00)80188-9. [DOI] [PubMed] [Google Scholar]
  51. Hevroni D., Rattner A., Bundman M., Lederfein D., Gabarah A., Mangelus M., Silverman M. A., Kedar H., Naor C., Kornuc M. Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J Mol Neurosci. 1998 Apr;10(2):75–98. doi: 10.1007/BF02737120. [DOI] [PubMed] [Google Scholar]
  52. Huang Y. Y., Kandel E. R. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron. 1998 Jul;21(1):169–178. doi: 10.1016/s0896-6273(00)80524-3. [DOI] [PubMed] [Google Scholar]
  53. Huang Y. Y., Kandel E. R., Varshavsky L., Brandon E. P., Qi M., Idzerda R. L., McKnight G. S., Bourtchouladze R. A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell. 1995 Dec 29;83(7):1211–1222. doi: 10.1016/0092-8674(95)90146-9. [DOI] [PubMed] [Google Scholar]
  54. Huang Y. Y., Li X. C., Kandel E. R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell. 1994 Oct 7;79(1):69–79. doi: 10.1016/0092-8674(94)90401-4. [DOI] [PubMed] [Google Scholar]
  55. Hummler E., Cole T. J., Blendy J. A., Ganss R., Aguzzi A., Schmid W., Beermann F., Schütz G. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5647–5651. doi: 10.1073/pnas.91.12.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Impey S., Mark M., Villacres E. C., Poser S., Chavkin C., Storm D. R. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron. 1996 May;16(5):973–982. doi: 10.1016/s0896-6273(00)80120-8. [DOI] [PubMed] [Google Scholar]
  57. Impey S., Obrietan K., Wong S. T., Poser S., Yano S., Wayman G., Deloulme J. C., Chan G., Storm D. R. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 1998 Oct;21(4):869–883. doi: 10.1016/s0896-6273(00)80602-9. [DOI] [PubMed] [Google Scholar]
  58. Impey S., Smith D. M., Obrietan K., Donahue R., Wade C., Storm D. R. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci. 1998 Nov;1(7):595–601. doi: 10.1038/2830. [DOI] [PubMed] [Google Scholar]
  59. Jenkins W. M., Merzenich M. M., Ochs M. T., Allard T., Guíc-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol. 1990 Jan;63(1):82–104. doi: 10.1152/jn.1990.63.1.82. [DOI] [PubMed] [Google Scholar]
  60. Kaas J. H., Merzenich M. M., Killackey H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325–356. doi: 10.1146/annurev.ne.06.030183.001545. [DOI] [PubMed] [Google Scholar]
  61. Kang H., Schuman E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995 Mar 17;267(5204):1658–1662. doi: 10.1126/science.7886457. [DOI] [PubMed] [Google Scholar]
  62. Kentros C., Hargreaves E., Hawkins R. D., Kandel E. R., Shapiro M., Muller R. V. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science. 1998 Jun 26;280(5372):2121–2126. doi: 10.1126/science.280.5372.2121. [DOI] [PubMed] [Google Scholar]
  63. LeDoux J. Fear and the brain: where have we been, and where are we going? Biol Psychiatry. 1998 Dec 15;44(12):1229–1238. doi: 10.1016/s0006-3223(98)00282-0. [DOI] [PubMed] [Google Scholar]
  64. Liao D., Hessler N. A., Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995 Jun 1;375(6530):400–404. doi: 10.1038/375400a0. [DOI] [PubMed] [Google Scholar]
  65. Lin X. Y., Glanzman D. L. Hebbian induction of long-term potentiation of Aplysia sensorimotor synapses: partial requirement for activation of an NMDA-related receptor. Proc Biol Sci. 1994 Mar 22;255(1344):215–221. doi: 10.1098/rspb.1994.0031. [DOI] [PubMed] [Google Scholar]
  66. Linden D. J., Connor J. A. Long-term synaptic depression. Annu Rev Neurosci. 1995;18:319–357. doi: 10.1146/annurev.ne.18.030195.001535. [DOI] [PubMed] [Google Scholar]
  67. Linden D. J. The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron. 1999 Apr;22(4):661–666. doi: 10.1016/s0896-6273(00)80726-6. [DOI] [PubMed] [Google Scholar]
  68. Lisman J. E., Fellous J. M., Wang X. J. A role for NMDA-receptor channels in working memory. Nat Neurosci. 1998 Aug;1(4):273–275. doi: 10.1038/1086. [DOI] [PubMed] [Google Scholar]
  69. Lisman J. E., Goldring M. A. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5320–5324. doi: 10.1073/pnas.85.14.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Maguire E. A., Frackowiak R. S., Frith C. D. Recalling routes around london: activation of the right hippocampus in taxi drivers. J Neurosci. 1997 Sep 15;17(18):7103–7110. doi: 10.1523/JNEUROSCI.17-18-07103.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Maletic-Savatic M., Malinow R., Svoboda K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science. 1999 Mar 19;283(5409):1923–1927. doi: 10.1126/science.283.5409.1923. [DOI] [PubMed] [Google Scholar]
  72. Marr D. A theory of cerebellar cortex. J Physiol. 1969 Jun;202(2):437–470. doi: 10.1113/jphysiol.1969.sp008820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci. 1971 Jul 1;262(841):23–81. doi: 10.1098/rstb.1971.0078. [DOI] [PubMed] [Google Scholar]
  74. Mars W. M., Zarnegar R., Michalopoulos G. K. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol. 1993 Sep;143(3):949–958. [PMC free article] [PubMed] [Google Scholar]
  75. Martin K. C., Casadio A., Zhu H., Yaping E., Rose J. C., Chen M., Bailey C. H., Kandel E. R. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell. 1997 Dec 26;91(7):927–938. doi: 10.1016/s0092-8674(00)80484-5. [DOI] [PubMed] [Google Scholar]
  76. Martin K. C., Michael D., Rose J. C., Barad M., Casadio A., Zhu H., Kandel E. R. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron. 1997 Jun;18(6):899–912. doi: 10.1016/s0896-6273(00)80330-x. [DOI] [PubMed] [Google Scholar]
  77. Mayford M., Barzilai A., Keller F., Schacher S., Kandel E. R. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science. 1992 May 1;256(5057):638–644. doi: 10.1126/science.1585176. [DOI] [PubMed] [Google Scholar]
  78. Mayford M., Mansuy I. M., Muller R. U., Kandel E. R. Memory and behavior: a second generation of genetically modified mice. Curr Biol. 1997 Sep 1;7(9):R580–R589. doi: 10.1016/s0960-9822(06)00287-9. [DOI] [PubMed] [Google Scholar]
  79. McHugh T. J., Blum K. I., Tsien J. Z., Tonegawa S., Wilson M. A. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell. 1996 Dec 27;87(7):1339–1349. doi: 10.1016/s0092-8674(00)81828-0. [DOI] [PubMed] [Google Scholar]
  80. Merzenich M. M., Nelson R. J., Stryker M. P., Cynader M. S., Schoppmann A., Zook J. M. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984 Apr 20;224(4):591–605. doi: 10.1002/cne.902240408. [DOI] [PubMed] [Google Scholar]
  81. Michael D., Martin K. C., Seger R., Ning M. M., Baston R., Kandel E. R. Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1864–1869. doi: 10.1073/pnas.95.4.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Milner B., Squire L. R., Kandel E. R. Cognitive neuroscience and the study of memory. Neuron. 1998 Mar;20(3):445–468. doi: 10.1016/s0896-6273(00)80987-3. [DOI] [PubMed] [Google Scholar]
  83. Montarolo P. G., Goelet P., Castellucci V. F., Morgan J., Kandel E. R., Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science. 1986 Dec 5;234(4781):1249–1254. doi: 10.1126/science.3775383. [DOI] [PubMed] [Google Scholar]
  84. Muller D. Ultrastructural plasticity of excitatory synapses. Rev Neurosci. 1997 Apr-Jun;8(2):77–93. doi: 10.1515/revneuro.1997.8.2.77. [DOI] [PubMed] [Google Scholar]
  85. Muller R. U., Kubie J. L., Ranck J. B., Jr Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J Neurosci. 1987 Jul;7(7):1935–1950. doi: 10.1523/JNEUROSCI.07-07-01935.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Muller R. U., Kubie J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci. 1987 Jul;7(7):1951–1968. doi: 10.1523/JNEUROSCI.07-07-01951.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Murphy G. G., Glanzman D. L. Mediation of classical conditioning in Aplysia californica by long-term potentiation of sensorimotor synapses. Science. 1997 Oct 17;278(5337):467–471. doi: 10.1126/science.278.5337.467. [DOI] [PubMed] [Google Scholar]
  88. Nguyen P. V., Kandel E. R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J Neurosci. 1996 May 15;16(10):3189–3198. doi: 10.1523/JNEUROSCI.16-10-03189.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Nibuya M., Nestler E. J., Duman R. S. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci. 1996 Apr 1;16(7):2365–2372. doi: 10.1523/JNEUROSCI.16-07-02365.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Nicoll R. A., Malenka R. C. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci. 1999 Apr 30;868:515–525. doi: 10.1111/j.1749-6632.1999.tb11320.x. [DOI] [PubMed] [Google Scholar]
  91. PENFIELD W., PEROT P. THE BRAIN'S RECORD OF AUDITORY AND VISUAL EXPERIENCE. A FINAL SUMMARY AND DISCUSSION. Brain. 1963 Dec;86:595–696. doi: 10.1093/brain/86.4.595. [DOI] [PubMed] [Google Scholar]
  92. Patterson S. L., Abel T., Deuel T. A., Martin K. C., Rose J. C., Kandel E. R. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996 Jun;16(6):1137–1145. doi: 10.1016/s0896-6273(00)80140-3. [DOI] [PubMed] [Google Scholar]
  93. Patterson S. L., Grover L. M., Schwartzkroin P. A., Bothwell M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron. 1992 Dec;9(6):1081–1088. doi: 10.1016/0896-6273(92)90067-n. [DOI] [PubMed] [Google Scholar]
  94. Pham T. A., Impey S., Storm D. R., Stryker M. P. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron. 1999 Jan;22(1):63–72. doi: 10.1016/s0896-6273(00)80679-0. [DOI] [PubMed] [Google Scholar]
  95. Pittenger C., Kandel E. A genetic switch for long-term memory. C R Acad Sci III. 1998 Feb-Mar;321(2-3):91–96. doi: 10.1016/s0764-4469(97)89807-1. [DOI] [PubMed] [Google Scholar]
  96. Posner M. I., Raichle M. E. The neuroimaging of human brain function. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):763–764. doi: 10.1073/pnas.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Qian Z., Gilbert M. E., Colicos M. A., Kandel E. R., Kuhl D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 1993 Feb 4;361(6411):453–457. doi: 10.1038/361453a0. [DOI] [PubMed] [Google Scholar]
  98. Rempel-Clower N. L., Zola S. M., Squire L. R., Amaral D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996 Aug 15;16(16):5233–5255. doi: 10.1523/JNEUROSCI.16-16-05233.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Robbins T. W., Everitt B. J. Drug addiction: bad habits add up. Nature. 1999 Apr 15;398(6728):567–570. doi: 10.1038/19208. [DOI] [PubMed] [Google Scholar]
  100. Rogan M. T., Stäubli U. V., LeDoux J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature. 1997 Dec 11;390(6660):604–607. doi: 10.1038/37601. [DOI] [PubMed] [Google Scholar]
  101. Rotenberg A., Mayford M., Hawkins R. D., Kandel E. R., Muller R. U. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell. 1996 Dec 27;87(7):1351–1361. doi: 10.1016/s0092-8674(00)81829-2. [DOI] [PubMed] [Google Scholar]
  102. Rudolph D., Tafuri A., Gass P., Hämmerling G. J., Arnold B., Schütz G. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4481–4486. doi: 10.1073/pnas.95.8.4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. SCOVILLE W. B., MILNER B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11–21. doi: 10.1136/jnnp.20.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Sanes J. R., Lichtman J. W. Can molecules explain long-term potentiation? Nat Neurosci. 1999 Jul;2(7):597–604. doi: 10.1038/10154. [DOI] [PubMed] [Google Scholar]
  105. Schuster C. M., Davis G. W., Fetter R. D., Goodman C. S. Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron. 1996 Oct;17(4):655–667. doi: 10.1016/s0896-6273(00)80198-1. [DOI] [PubMed] [Google Scholar]
  106. Selkoe D. J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999 Jun 24;399(6738 Suppl):A23–A31. doi: 10.1038/399a023. [DOI] [PubMed] [Google Scholar]
  107. Sgambato V., Pagès C., Rogard M., Besson M. J., Caboche J. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci. 1998 Nov 1;18(21):8814–8825. doi: 10.1523/JNEUROSCI.18-21-08814.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Skaggs W. E., McNaughton B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996 Mar 29;271(5257):1870–1873. doi: 10.1126/science.271.5257.1870. [DOI] [PubMed] [Google Scholar]
  109. Skoulakis E. M., Davis R. L. 14-3-3 proteins in neuronal development and function. Mol Neurobiol. 1998 Jun;16(3):269–284. doi: 10.1007/BF02741386. [DOI] [PubMed] [Google Scholar]
  110. Smith E. E., Jonides J. Storage and executive processes in the frontal lobes. Science. 1999 Mar 12;283(5408):1657–1661. doi: 10.1126/science.283.5408.1657. [DOI] [PubMed] [Google Scholar]
  111. Sorra K. E., Harris K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J Neurosci. 1998 Jan 15;18(2):658–671. doi: 10.1523/JNEUROSCI.18-02-00658.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Squire L. R., Zola-Morgan S. The medial temporal lobe memory system. Science. 1991 Sep 20;253(5026):1380–1386. doi: 10.1126/science.1896849. [DOI] [PubMed] [Google Scholar]
  113. Swain R. A., Shinkman P. G., Nordholm A. F., Thompson R. F. Cerebellar stimulation as an unconditioned stimulus in classical conditioning. Behav Neurosci. 1992 Oct;106(5):739–750. doi: 10.1037//0735-7044.106.5.739. [DOI] [PubMed] [Google Scholar]
  114. Teng E., Squire L. R. Memory for places learned long ago is intact after hippocampal damage. Nature. 1999 Aug 12;400(6745):675–677. doi: 10.1038/23276. [DOI] [PubMed] [Google Scholar]
  115. Thompson R. F., Thompson J. K., Kim J. J., Krupa D. J., Shinkman P. G. The nature of reinforcement in cerebellar learning. Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):150–176. doi: 10.1006/nlme.1998.3845. [DOI] [PubMed] [Google Scholar]
  116. Tulving E., Schacter D. L., McLachlan D. R., Moscovitch M. Priming of semantic autobiographical knowledge: a case study of retrograde amnesia. Brain Cogn. 1988 Aug;8(1):3–20. doi: 10.1016/0278-2626(88)90035-8. [DOI] [PubMed] [Google Scholar]
  117. Uttl B., Graf P. Episodic spatial memory in adulthood. Psychol Aging. 1993 Jun;8(2):257–273. doi: 10.1037//0882-7974.8.2.257. [DOI] [PubMed] [Google Scholar]
  118. Vargha-Khadem F., Gadian D. G., Watkins K. E., Connelly A., Van Paesschen W., Mishkin M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science. 1997 Jul 18;277(5324):376–380. doi: 10.1126/science.277.5324.376. [DOI] [PubMed] [Google Scholar]
  119. WEISKRANTZ L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol. 1956 Aug;49(4):381–391. doi: 10.1037/h0088009. [DOI] [PubMed] [Google Scholar]
  120. Yin J. C., Del Vecchio M., Zhou H., Tully T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell. 1995 Apr 7;81(1):107–115. doi: 10.1016/0092-8674(95)90375-5. [DOI] [PubMed] [Google Scholar]
  121. Yin J. C., Wallach J. S., Del Vecchio M., Wilder E. L., Zhou H., Quinn W. G., Tully T. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell. 1994 Oct 7;79(1):49–58. doi: 10.1016/0092-8674(94)90399-9. [DOI] [PubMed] [Google Scholar]
  122. Zamanillo D., Sprengel R., Hvalby O., Jensen V., Burnashev N., Rozov A., Kaiser K. M., Köster H. J., Borchardt T., Worley P. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science. 1999 Jun 11;284(5421):1805–1811. doi: 10.1126/science.284.5421.1805. [DOI] [PubMed] [Google Scholar]
  123. Zola-Morgan S., Squire L. R., Amaral D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986 Oct;6(10):2950–2967. doi: 10.1523/JNEUROSCI.06-10-02950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES