Abstract
Recent analyses of association fibre networks in the primate cerebral cortex have revealed a small number of densely intra-connected and hierarchically organized structural systems. Corresponding analyses of data on functional connectivity are required to establish the significance of these structural systems. We therefore built up a relational database by systematically collating published data on the spread of activity after strychnine-induced disinhibition in the macaque cerebral cortex in vivo. After mapping these data to two different parcellation schemes, we used three independent methods of analysis which demonstrate that the cortical network of functional interactions is not homogeneous, but shows a clear segregation into functional assemblies of mutually interacting areas. The assemblies suggest a principal division of the cortex into visual, somatomotor and orbito-temporo-insular systems, while motor and somatosensory areas are inseparably interrelated. These results are largely compatible with corresponding analyses of structural data of mammalian cerebral cortex, and deliver the first functional evidence for 'small-world' architecture of primate cerebral cortex.
Full Text
The Full Text of this article is available as a PDF (642.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angel A. Central neuronal pathways and the process of anaesthesia. Br J Anaesth. 1993 Jul;71(1):148–163. doi: 10.1093/bja/71.1.148. [DOI] [PubMed] [Google Scholar]
- Angel A. The G. L. Brown lecture. Adventures in anaesthesia. Exp Physiol. 1991 Jan;76(1):1–38. doi: 10.1113/expphysiol.1991.sp003471. [DOI] [PubMed] [Google Scholar]
- Baizer J. S., Ungerleider L. G., Desimone R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci. 1991 Jan;11(1):168–190. doi: 10.1523/JNEUROSCI.11-01-00168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbas H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol. 1988 Oct 15;276(3):313–342. doi: 10.1002/cne.902760302. [DOI] [PubMed] [Google Scholar]
- Barbas H., Pandya D. N. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol. 1987 Feb 8;256(2):211–228. doi: 10.1002/cne.902560203. [DOI] [PubMed] [Google Scholar]
- Barbas H., Pandya D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1989 Aug 15;286(3):353–375. doi: 10.1002/cne.902860306. [DOI] [PubMed] [Google Scholar]
- Bates J. F., Goldman-Rakic P. S. Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol. 1993 Oct 8;336(2):211–228. doi: 10.1002/cne.903360205. [DOI] [PubMed] [Google Scholar]
- Blessing W. W. Inadequate frameworks for understanding bodily homeostasis. Trends Neurosci. 1997 Jun;20(6):235–239. doi: 10.1016/s0166-2236(96)01029-6. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Dray A. Barbiturate reversal of amino acid antagonism produced by convulsant agents. Nature. 1976 Nov 18;264(5583):276–278. doi: 10.1038/264276a0. [DOI] [PubMed] [Google Scholar]
- Büchel C., Friston K. J. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex. 1997 Dec;7(8):768–778. doi: 10.1093/cercor/7.8.768. [DOI] [PubMed] [Google Scholar]
- Carmichael S. T., Price J. L. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol. 1994 Aug 15;346(3):366–402. doi: 10.1002/cne.903460305. [DOI] [PubMed] [Google Scholar]
- Carmichael S. T., Price J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996 Jul 22;371(2):179–207. doi: 10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Cavada C., Goldman-Rakic P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol. 1989 Sep 22;287(4):422–445. doi: 10.1002/cne.902870403. [DOI] [PubMed] [Google Scholar]
- Chatt A. B., Ebersole J. S. Comparisons between strychnine and penicillin epileptogenesis suggest that propagating epileptiform abnormalities require the potentiation of thalamocortical circuitry in neocortical layer 4. Exp Neurol. 1988 May;100(2):365–380. doi: 10.1016/0014-4886(88)90115-x. [DOI] [PubMed] [Google Scholar]
- Colby C. L., Gattass R., Olson C. R., Gross C. G. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol. 1988 Mar 15;269(3):392–413. doi: 10.1002/cne.902690307. [DOI] [PubMed] [Google Scholar]
- DUNSMORE R. H., LENNOX M. A. Stimulation and strychninization of supracallosal anterior cingulate gyrus. J Neurophysiol. 1950 May;13(3):207–214. doi: 10.1152/jn.1950.13.3.207. [DOI] [PubMed] [Google Scholar]
- Dey B. K., Wong Y. W., Too H. P. Cloning of a novel murine isoform of the glial cell line-derived neurotrophic factor receptor. Neuroreport. 1998 Jan 5;9(1):37–42. doi: 10.1097/00001756-199801050-00008. [DOI] [PubMed] [Google Scholar]
- Dow R. S. The electrical activity of the cerebellum and its functional significance. J Physiol. 1938 Oct 14;94(1):67–86. doi: 10.1113/jphysiol.1938.sp003663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B. Limitations of method of strychnine neuronography. J Neurophysiol. 1951 Jan;14(1):73–79. doi: 10.1152/jn.1951.14.1.73. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
- Fujita M., Sato K., Sato M., Inoue T., Kozuka T., Tohyama M. Regional distribution of the cells expressing glycine receptor beta subunit mRNA in the rat brain. Brain Res. 1991 Sep 27;560(1-2):23–37. doi: 10.1016/0006-8993(91)91210-r. [DOI] [PubMed] [Google Scholar]
- Gebhard R., Zilles K., Schleicher A., Everitt B. J., Robbins T. W., Divac I. Parcellation of the frontal cortex of the New World monkey Callithrix jacchus by eight neurotransmitter-binding sites. Anat Embryol (Berl) 1995 Jun;191(6):509–517. doi: 10.1007/BF00186741. [DOI] [PubMed] [Google Scholar]
- Geyer S., Matelli M., Luppino G., Schleicher A., Jansen Y., Palomero-Gallagher N., Zilles K. Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey. J Comp Neurol. 1998 Jul 27;397(2):231–250. doi: 10.1002/(sici)1096-9861(19980727)397:2<231::aid-cne6>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Hilgetag C. C., O'Neill M. A., Young M. P. Indeterminate organization of the visual system. Science. 1996 Feb 9;271(5250):776–777. doi: 10.1126/science.271.5250.776. [DOI] [PubMed] [Google Scholar]
- Holmes O. The intracortical neuronal connectivity subserving focal epileptiform activity in rat neocortex. Exp Physiol. 1994 Sep;79(5):705–721. doi: 10.1113/expphysiol.1994.sp003802. [DOI] [PubMed] [Google Scholar]
- Jouve B., Rosenstiehl P., Imbert M. A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex. 1998 Jan-Feb;8(1):28–39. doi: 10.1093/cercor/8.1.28. [DOI] [PubMed] [Google Scholar]
- Kehne J. H., Kane J. M., Chaney S. F., Hurst G., McCloskey T. C., Petty M. A., Senyah Y., Wolf H. H., Zobrist R., White H. S. Preclinical characterization of MDL 27,192 as a potential broad spectrum anticonvulsant agent with neuroprotective properties. Epilepsy Res. 1997 Apr;27(1):41–54. doi: 10.1016/s0920-1211(96)01020-0. [DOI] [PubMed] [Google Scholar]
- Kritzer M. F., Cowey A., Somogyi P. Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey. J Neurosci. 1992 Nov;12(11):4545–4564. doi: 10.1523/JNEUROSCI.12-11-04545.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Köhler S., McIntosh A. R., Moscovitch M., Winocur G. Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. Cereb Cortex. 1998 Jul-Aug;8(5):451–461. doi: 10.1093/cercor/8.5.451. [DOI] [PubMed] [Google Scholar]
- Kötter R., Meyer N. The limbic system: a review of its empirical foundation. Behav Brain Res. 1992 Dec 31;52(2):105–127. doi: 10.1016/s0166-4328(05)80221-9. [DOI] [PubMed] [Google Scholar]
- Kötter R., Stephan K. E. Useless or helpful? The "limbic system" concept. Rev Neurosci. 1997 Apr-Jun;8(2):139–145. doi: 10.1515/revneuro.1997.8.2.139. [DOI] [PubMed] [Google Scholar]
- McGuire P. K., Bates J. F., Goldman-Rakic P. S. Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cereb Cortex. 1991 Sep-Oct;1(5):390–407. doi: 10.1093/cercor/1.5.390. [DOI] [PubMed] [Google Scholar]
- McIntosh A. R., Gonzalez-Lima F. Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effects of acoustic startle habituation on the auditory system. Brain Res. 1991 May 3;547(2):295–302. doi: 10.1016/0006-8993(91)90974-z. [DOI] [PubMed] [Google Scholar]
- McIntosh A. R., Grady C. L., Haxby J. V., Ungerleider L. G., Horwitz B. Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb Cortex. 1996 Jul-Aug;6(4):571–584. doi: 10.1093/cercor/6.4.571. [DOI] [PubMed] [Google Scholar]
- McIntosh A. R., Grady C. L., Ungerleider L. G., Haxby J. V., Rapoport S. I., Horwitz B. Network analysis of cortical visual pathways mapped with PET. J Neurosci. 1994 Feb;14(2):655–666. doi: 10.1523/JNEUROSCI.14-02-00655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mesulam M. M., Mufson E. J. Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol. 1982 Nov 20;212(1):1–22. doi: 10.1002/cne.902120102. [DOI] [PubMed] [Google Scholar]
- Mesulam M. M., Mufson E. J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol. 1982 Nov 20;212(1):38–52. doi: 10.1002/cne.902120104. [DOI] [PubMed] [Google Scholar]
- Morecraft R. J., Geula C., Mesulam M. M. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol. 1992 Sep 15;323(3):341–358. doi: 10.1002/cne.903230304. [DOI] [PubMed] [Google Scholar]
- Morán M. A., Mufson E. J., Mesulam M. M. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol. 1987 Feb 1;256(1):88–103. doi: 10.1002/cne.902560108. [DOI] [PubMed] [Google Scholar]
- Mufson E. J., Mesulam M. M. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol. 1982 Nov 20;212(1):23–37. doi: 10.1002/cne.902120103. [DOI] [PubMed] [Google Scholar]
- Naas E., Zilles K., Gnahn H., Betz H., Becker C. M., Schröder H. Glycine receptor immunoreactivity in rat and human cerebral cortex. Brain Res. 1991 Oct 4;561(1):139–146. doi: 10.1016/0006-8993(91)90758-n. [DOI] [PubMed] [Google Scholar]
- PRIBRAM K. H., MACLEAN P. D. Neuronographic analysis of medial and basal cerebral cortex. II. Monkey. J Neurophysiol. 1953 May;16(3):324–340. doi: 10.1152/jn.1953.16.3.324. [DOI] [PubMed] [Google Scholar]
- Pandya D. N., Seltzer B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol. 1982 Jan 10;204(2):196–210. doi: 10.1002/cne.902040208. [DOI] [PubMed] [Google Scholar]
- Pavlides C., Miyashita E., Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 1993 Aug;70(2):733–741. doi: 10.1152/jn.1993.70.2.733. [DOI] [PubMed] [Google Scholar]
- Petrides M., Pandya D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol. 1984 Sep 1;228(1):105–116. doi: 10.1002/cne.902280110. [DOI] [PubMed] [Google Scholar]
- Pocock G., Richards C. D. Excitatory and inhibitory synaptic mechanisms in anaesthesia. Br J Anaesth. 1993 Jul;71(1):134–147. doi: 10.1093/bja/71.1.134. [DOI] [PubMed] [Google Scholar]
- Porro C. A., Francescato M. P., Cettolo V., Diamond M. E., Baraldi P., Zuiani C., Bazzocchi M., di Prampero P. E. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci. 1996 Dec 1;16(23):7688–7698. doi: 10.1523/JNEUROSCI.16-23-07688.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preuss T. M., Goldman-Rakic P. S. Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol. 1991 Aug 22;310(4):429–474. doi: 10.1002/cne.903100402. [DOI] [PubMed] [Google Scholar]
- Rolls E. T. Information processing in the taste system of primates. J Exp Biol. 1989 Sep;146:141–164. doi: 10.1242/jeb.146.1.141. [DOI] [PubMed] [Google Scholar]
- Rostock A., Tober C., Rundfeldt C., Bartsch R., Unverferth K., Engel J., Wolf H. H., White H. S. AWD 140-190: a new anticonvulsant with a very good margin of safety. Epilepsy Res. 1997 Jul;28(1):17–28. doi: 10.1016/s0920-1211(97)00023-5. [DOI] [PubMed] [Google Scholar]
- SUGAR O., AMADOR L. V., GRIPONISSIOTIS B. Cortico-cortical connections of the walls of the superior temporal sulcus in the monkey (Macaca mulatt). J Neuropathol Exp Neurol. 1950 Apr;9(2):179–185. doi: 10.1097/00005072-195004000-00006. [DOI] [PubMed] [Google Scholar]
- SUGAR O., AMADOR L. V., GRIPONISSIOTIS B. Corticocortical connections of posterior wall of central sulcus in monkey. J Neurophysiol. 1950 May;13(3):229–233. doi: 10.1152/jn.1950.13.3.229. [DOI] [PubMed] [Google Scholar]
- SUGAR O., PETR R., AMADOR L. V., GRIPONISSIOTIS B. Cortico-cortical connections of the cortex buried in the intraparietal and principal sulci of the monkey (Macaca mulatta). J Neuropathol Exp Neurol. 1950 Oct;9(4):430–437. doi: 10.1097/00005072-195010000-00008. [DOI] [PubMed] [Google Scholar]
- Sato K., Kiyama H., Tohyama M. Regional distribution of cells expressing glycine receptor alpha 2 subunit mRNA in the rat brain. Brain Res. 1992 Sep 11;590(1-2):95–108. doi: 10.1016/0006-8993(92)91085-s. [DOI] [PubMed] [Google Scholar]
- Scannell J. W., Blakemore C., Young M. P. Analysis of connectivity in the cat cerebral cortex. J Neurosci. 1995 Feb;15(2):1463–1483. doi: 10.1523/JNEUROSCI.15-02-01463.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz M. L., Goldman-Rakic P. S. Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol. 1984 Jul 1;226(3):403–420. doi: 10.1002/cne.902260309. [DOI] [PubMed] [Google Scholar]
- Seal J. Sensory and motor functions of the superior parietal cortex of the monkey as revealed by single-neuron recordings. Brain Behav Evol. 1989;33(2-3):113–117. doi: 10.1159/000115911. [DOI] [PubMed] [Google Scholar]
- Shirasaki T., Klee M. R., Nakaye T., Akaike N. Differential blockade of bicuculline and strychnine on GABA- and glycine-induced responses in dissociated rat hippocampal pyramidal cells. Brain Res. 1991 Oct 4;561(1):77–83. doi: 10.1016/0006-8993(91)90751-g. [DOI] [PubMed] [Google Scholar]
- Snyder L. H., Batista A. P., Andersen R. A. Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. J Neurophysiol. 1998 May;79(5):2814–2819. doi: 10.1152/jn.1998.79.5.2814. [DOI] [PubMed] [Google Scholar]
- Stepniewska I., Preuss T. M., Kaas J. H. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J Comp Neurol. 1993 Apr 8;330(2):238–271. doi: 10.1002/cne.903300207. [DOI] [PubMed] [Google Scholar]
- Takahashi Y., Shirasaki T., Yamanaka H., Ishibashi H., Akaike N. Physiological roles of glycine and gamma-aminobutyric acid in dissociated neurons of rat visual cortex. Brain Res. 1994 Mar 21;640(1-2):229–235. doi: 10.1016/0006-8993(94)91877-5. [DOI] [PubMed] [Google Scholar]
- Tononi G., McIntosh A. R., Russell D. P., Edelman G. M. Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage. 1998 Feb;7(2):133–149. doi: 10.1006/nimg.1997.0313. [DOI] [PubMed] [Google Scholar]
- Ungerleider L. G., Courtney S. M., Haxby J. V. A neural system for human visual working memory. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):883–890. doi: 10.1073/pnas.95.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watts D. J., Strogatz S. H. Collective dynamics of 'small-world' networks. Nature. 1998 Jun 4;393(6684):440–442. doi: 10.1038/30918. [DOI] [PubMed] [Google Scholar]
- Yaxley S., Rolls E. T., Sienkiewicz Z. J. Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol. 1990 Apr;63(4):689–700. doi: 10.1152/jn.1990.63.4.689. [DOI] [PubMed] [Google Scholar]
- Young M. P. Objective analysis of the topological organization of the primate cortical visual system. Nature. 1992 Jul 9;358(6382):152–155. doi: 10.1038/358152a0. [DOI] [PubMed] [Google Scholar]
- Young M. P., Scannell J. W., O'Neill M. A., Hilgetag C. C., Burns G., Blakemore C. Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):281–308. doi: 10.1098/rstb.1995.0069. [DOI] [PubMed] [Google Scholar]
- Young M. P. The organization of neural systems in the primate cerebral cortex. Proc Biol Sci. 1993 Apr 22;252(1333):13–18. doi: 10.1098/rspb.1993.0040. [DOI] [PubMed] [Google Scholar]
- el-Beheiry H., Puil E. Anaesthetic depression of excitatory synaptic transmission in neocortex. Exp Brain Res. 1989;77(1):87–93. doi: 10.1007/BF00250570. [DOI] [PubMed] [Google Scholar]