Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Jan 29;355(1393):55–70. doi: 10.1098/rstb.2000.0549

Analysis of the connectional organization of neural systems associated with the hippocampus in rats.

G A Burns 1, M P Young 1
PMCID: PMC1692716  PMID: 10703044

Abstract

The hippocampus of the rat enjoys a central significance for researchers interested in the neural mechanisms of memory and spatial information processing. Many of the theoretical models advanced to explain function in this system, however, do not reflect the wealth of information on the connectivity of these structures, and employ greatly simplified treatments of its complex connectivity. We were interested in whether a more analytical approach, which begins with analysis of the connectivity of the system, might provide insights complementary to those derived by synthetic models. Accordingly, we collated detailed neuroanatomical information about the connectivity of the hippocampal system in the rat, and analysed the resulting data. Analyses of connectivity based on a variety of different analytical techniques have recently been used to elucidate the global organization of other systems in the macaque and cat, and have given rise to successful predictions. We applied non-metric multidimensional scaling and non-parametric cluster analysis to our summary matrix of connection data. The analyses produced organizational schemes that were consistent with known physiological properties and provided the basis for making tentative predictions of the further structures that may contain 'place' and 'head-direction' cells, which structures we identify. The consistency between the analyses of connectivity and the distribution of physiological properties across the system suggests that functional relationships are constrained by the organization of the connectivity of the system, and so that structure and function are linked at the systems level.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaral D. G., Witter M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31(3):571–591. doi: 10.1016/0306-4522(89)90424-7. [DOI] [PubMed] [Google Scholar]
  2. Blair H. T., Sharp P. E. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J Neurosci. 1995 Sep;15(9):6260–6270. doi: 10.1523/JNEUROSCI.15-09-06260.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bunsey M., Eichenbaum H. Conservation of hippocampal memory function in rats and humans. Nature. 1996 Jan 18;379(6562):255–257. doi: 10.1038/379255a0. [DOI] [PubMed] [Google Scholar]
  4. Buzsáki G. Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience. 1989;31(3):551–570. doi: 10.1016/0306-4522(89)90423-5. [DOI] [PubMed] [Google Scholar]
  5. Chen L. L., Lin L. H., Green E. J., Barnes C. A., McNaughton B. L. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res. 1994;101(1):8–23. doi: 10.1007/BF00243212. [DOI] [PubMed] [Google Scholar]
  6. Cohen N. J., Eichenbaum H. The theory that wouldn't die: a critical look at the spatial mapping theory of hippocampal function. Hippocampus. 1991 Jul;1(3):265–268. doi: 10.1002/hipo.450010312. [DOI] [PubMed] [Google Scholar]
  7. Eichenbaum H., Otto T., Cohen N. J. The hippocampus--what does it do? Behav Neural Biol. 1992 Jan;57(1):2–36. doi: 10.1016/0163-1047(92)90724-i. [DOI] [PubMed] [Google Scholar]
  8. Goodhill G. J., Simmen M. W., Willshaw D. J. An evaluation of the use of multidimensional scaling for understanding brain connectivity. Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):265–280. doi: 10.1098/rstb.1995.0068. [DOI] [PubMed] [Google Scholar]
  9. Groenewegen H. J. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience. 1988 Feb;24(2):379–431. doi: 10.1016/0306-4522(88)90339-9. [DOI] [PubMed] [Google Scholar]
  10. Haglund L., Swanson L. W., Köhler C. The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol. 1984 Oct 20;229(2):171–185. doi: 10.1002/cne.902290204. [DOI] [PubMed] [Google Scholar]
  11. Jung M. W., Qin Y., McNaughton B. L., Barnes C. A. Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex. 1998 Jul-Aug;8(5):437–450. doi: 10.1093/cercor/8.5.437. [DOI] [PubMed] [Google Scholar]
  12. Kirk I. J. Supramammillary neural discharge patterns and hippocampal EEG. Brain Res Bull. 1997;42(1):23–26. doi: 10.1016/s0361-9230(96)00094-9. [DOI] [PubMed] [Google Scholar]
  13. Linden R., Perry V. H. Massive retinotectal projection in rats. Brain Res. 1983 Aug 1;272(1):145–149. doi: 10.1016/0006-8993(83)90371-2. [DOI] [PubMed] [Google Scholar]
  14. Lopes da Silva F. H., Witter M. P., Boeijinga P. H., Lohman A. H. Anatomic organization and physiology of the limbic cortex. Physiol Rev. 1990 Apr;70(2):453–511. doi: 10.1152/physrev.1990.70.2.453. [DOI] [PubMed] [Google Scholar]
  15. Martin P. R. The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Exp Brain Res. 1986;62(1):77–88. doi: 10.1007/BF00237404. [DOI] [PubMed] [Google Scholar]
  16. McNaughton B. L., Barnes C. A., Gerrard J. L., Gothard K., Jung M. W., Knierim J. J., Kudrimoti H., Qin Y., Skaggs W. E., Suster M. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol. 1996 Jan;199(Pt 1):173–185. doi: 10.1242/jeb.199.1.173. [DOI] [PubMed] [Google Scholar]
  17. Meibach R. C., Siegel A. Efferent connections of the hippocampal formation in the rat. Brain Res. 1977 Mar 25;124(2):197–224. doi: 10.1016/0006-8993(77)90880-0. [DOI] [PubMed] [Google Scholar]
  18. Mizumori S. J., Williams J. D. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci. 1993 Sep;13(9):4015–4028. doi: 10.1523/JNEUROSCI.13-09-04015.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morris R. G., Garrud P., Rawlins J. N., O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982 Jun 24;297(5868):681–683. doi: 10.1038/297681a0. [DOI] [PubMed] [Google Scholar]
  20. Muller R. A quarter of a century of place cells. Neuron. 1996 Nov;17(5):813–822. doi: 10.1016/s0896-6273(00)80214-7. [DOI] [PubMed] [Google Scholar]
  21. O'Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971 Nov;34(1):171–175. doi: 10.1016/0006-8993(71)90358-1. [DOI] [PubMed] [Google Scholar]
  22. Patton P. E., McNaughton B. Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus. 1995;5(4):245–286. doi: 10.1002/hipo.450050402. [DOI] [PubMed] [Google Scholar]
  23. Poucet B. Searching for spatial unit firing in the prelimbic area of the rat medial prefrontal cortex. Behav Brain Res. 1997 Mar;84(1-2):151–159. doi: 10.1016/s0166-4328(96)00144-1. [DOI] [PubMed] [Google Scholar]
  24. Quirk G. J., Muller R. U., Kubie J. L., Ranck J. B., Jr The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci. 1992 May;12(5):1945–1963. doi: 10.1523/JNEUROSCI.12-05-01945.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quirk G. J., Muller R. U., Kubie J. L. The firing of hippocampal place cells in the dark depends on the rat's recent experience. J Neurosci. 1990 Jun;10(6):2008–2017. doi: 10.1523/JNEUROSCI.10-06-02008.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rawlins J. N., Lyford G., Seferiades A. Does it still make sense to develop nonspatial theories of hippocampal function? Hippocampus. 1991 Jul;1(3):283–286. doi: 10.1002/hipo.450010317. [DOI] [PubMed] [Google Scholar]
  27. Redish A. D., Touretzky D. S. Cognitive maps beyond the hippocampus. Hippocampus. 1997;7(1):15–35. doi: 10.1002/(SICI)1098-1063(1997)7:1<15::AID-HIPO3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  28. Rothblat L. A., Vnek N., Gleason T. C., Kromer L. F. Role of the parahippocampal region in spatial and non-spatial memory: effects of parahippocampal lesions on rewarded alternation and concurrent object discrimination learning in the rat. Behav Brain Res. 1993 May 31;55(1):93–100. doi: 10.1016/0166-4328(93)90011-e. [DOI] [PubMed] [Google Scholar]
  29. Sanderson K. J., Dreher B., Gayer N. Prosencephalic connections of striate and extrastriate areas of rat visual cortex. Exp Brain Res. 1991;85(2):324–334. doi: 10.1007/BF00229410. [DOI] [PubMed] [Google Scholar]
  30. Scannell J. W., Blakemore C., Young M. P. Analysis of connectivity in the cat cerebral cortex. J Neurosci. 1995 Feb;15(2):1463–1483. doi: 10.1523/JNEUROSCI.15-02-01463.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scannell J. W., Sengpiel F., Tovée M. J., Benson P. J., Blakemore C., Young M. P. Visual motion processing in the anterior ectosylvian sulcus of the cat. J Neurophysiol. 1996 Aug;76(2):895–907. doi: 10.1152/jn.1996.76.2.895. [DOI] [PubMed] [Google Scholar]
  32. Scannell J. W., Young M. P. The connectional organization of neural systems in the cat cerebral cortex. Curr Biol. 1993 Apr 1;3(4):191–200. doi: 10.1016/0960-9822(93)90331-h. [DOI] [PubMed] [Google Scholar]
  33. Seki M., Zyo K. Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. J Comp Neurol. 1984 Oct 20;229(2):242–256. doi: 10.1002/cne.902290209. [DOI] [PubMed] [Google Scholar]
  34. Sharp P. E., Green C. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. J Neurosci. 1994 Apr;14(4):2339–2356. doi: 10.1523/JNEUROSCI.14-04-02339.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sharp P. E. Subicular cells generate similar spatial firing patterns in two geometrically and visually distinctive environments: comparison with hippocampal place cells. Behav Brain Res. 1997 Apr;85(1):71–92. doi: 10.1016/s0166-4328(96)00165-9. [DOI] [PubMed] [Google Scholar]
  36. Shibata H. A direct projection from the entorhinal cortex to the mammillary nuclei in the rat. Neurosci Lett. 1988 Jul 19;90(1-2):6–10. doi: 10.1016/0304-3940(88)90777-x. [DOI] [PubMed] [Google Scholar]
  37. Shibata H. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1989 Jul 22;285(4):436–452. doi: 10.1002/cne.902850403. [DOI] [PubMed] [Google Scholar]
  38. Shibata H. Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat. J Comp Neurol. 1993 Nov 15;337(3):431–445. doi: 10.1002/cne.903370307. [DOI] [PubMed] [Google Scholar]
  39. Shibata H. Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. J Comp Neurol. 1992 Sep 1;323(1):117–127. doi: 10.1002/cne.903230110. [DOI] [PubMed] [Google Scholar]
  40. Simmen M. W., Goodhill G. J., Willshaw D. J. Scaling and brain connectivity. Nature. 1994 Jun 9;369(6480):448–450. doi: 10.1038/369448b0. [DOI] [PubMed] [Google Scholar]
  41. Swanson L. W., Cowan W. M. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977 Mar 1;172(1):49–84. doi: 10.1002/cne.901720104. [DOI] [PubMed] [Google Scholar]
  42. Taube J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci. 1995 Jan;15(1 Pt 1):70–86. doi: 10.1523/JNEUROSCI.15-01-00070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Taube J. S., Muller R. U., Ranck J. B., Jr Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990 Feb;10(2):420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taube J. S. Place cells recorded in the parasubiculum of freely moving rats. Hippocampus. 1995;5(6):569–583. doi: 10.1002/hipo.450050608. [DOI] [PubMed] [Google Scholar]
  45. Touretzky D. S., Redish A. D. Theory of rodent navigation based on interacting representations of space. Hippocampus. 1996;6(3):247–270. doi: 10.1002/(SICI)1098-1063(1996)6:3<247::AID-HIPO4>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  46. Wiesenfeld Z., Kornel E. E. Receptive fields of single cells in the visual cortex of the hooded rat. Brain Res. 1975 Sep 5;94(3):401–412. doi: 10.1016/0006-8993(75)90225-5. [DOI] [PubMed] [Google Scholar]
  47. Young M. P. Objective analysis of the topological organization of the primate cortical visual system. Nature. 1992 Jul 9;358(6382):152–155. doi: 10.1038/358152a0. [DOI] [PubMed] [Google Scholar]
  48. Young M. P., Scannell J. W., Burns G. A., Blakemore C. Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci. 1994 Jul-Sep;5(3):227–250. doi: 10.1515/revneuro.1994.5.3.227. [DOI] [PubMed] [Google Scholar]
  49. Young M. P., Scannell J. W., O'Neill M. A., Hilgetag C. C., Burns G., Blakemore C. Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):281–308. doi: 10.1098/rstb.1995.0069. [DOI] [PubMed] [Google Scholar]
  50. Young M. P. The organization of neural systems in the primate cerebral cortex. Proc Biol Sci. 1993 Apr 22;252(1333):13–18. doi: 10.1098/rspb.1993.0040. [DOI] [PubMed] [Google Scholar]
  51. van Groen T., Wyss J. M. The connections of presubiculum and parasubiculum in the rat. Brain Res. 1990 Jun 4;518(1-2):227–243. doi: 10.1016/0006-8993(90)90976-i. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES