Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Feb 29;355(1394):179–190. doi: 10.1098/rstb.2000.0557

Mapping the bacterial cell architecture into the chromosome.

A Danchin 1, P Guerdoux-Jamet 1, I Moszer 1, P Nitschké 1
PMCID: PMC1692725  PMID: 10724454

Abstract

A genome is not a simple collection of genes. We propose here that it can be viewed as being organized as a 'celluloculus' similar to the homunculus of preformists, but pertaining to the category of programmes (or algorithms) rather than to that of architectures or structures: a significant correlation exists between the distribution of genes along the chromosome and the physical architecture of the cell. We review here data supporting this observation, stressing physical constraints operating on the cell's architecture and dynamics, and their consequences in terms of gene and genome structure. If such a correlation exists, it derives from some selection pressure: simple and general physical principles acting at the level of the cell structure are discussed. As a first case in point we see the piling up of planar modules as a stable, entropy-driven, architectural principle that could be at the root of the coupling between the architecture of the cell and the location of genes at specific places in the chromosome. We propose that the specific organization of certain genes whose products have a general tendency to form easily planar modules is a general motor for architectural organization in the bacterial cell. A second mechanism, operating at the transcription level, is described that could account for the efficient building up of complex structures. As an organizing principle we suggest that exploration by biological polymers of the vast space of possible conformation states is constrained by anchoring points. In particular, we suggest that transcription does not always allow the 5'-end of the transcript to go free and explore the many conformations available, but that, in many cases, it remains linked to the transcribing RNA polymerase complex in such a way that loops of RNA, rather than threads with a free end, explore the surrounding medium. In bacteria, extension of the loops throughout the cytoplasm would therefore be mediated by the de novo synthesis of ribosomes in growing cells. Termination of transcription and mRNA turnover would accordingly be expected to be controlled by sequence features at both the 3'- and 5'-ends of the molecule. These concepts are discussed taking into account in vitro analysis of genome sequences and experimental data about cell compartmentalization, mRNA folding and turnover, as well as known structural features of protein and membrane complexes.

Full Text

The Full Text of this article is available as a PDF (410.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama Y., Ito K. A new Escherichia coli gene, fdrA, identified by suppression analysis of dominant negative FtsH mutations. Mol Gen Genet. 1995 Nov 15;249(2):202–208. doi: 10.1007/BF00290367. [DOI] [PubMed] [Google Scholar]
  2. Burns C. M., Richardson L. V., Richardson J. P. Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J Mol Biol. 1998 May 1;278(2):307–316. doi: 10.1006/jmbi.1998.1691. [DOI] [PubMed] [Google Scholar]
  3. Charlier D., Hassanzadeh G., Kholti A., Gigot D., Piérard A., Glansdorff N. carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColEI multimers. J Mol Biol. 1995 Jul 21;250(4):392–406. doi: 10.1006/jmbi.1995.0385. [DOI] [PubMed] [Google Scholar]
  4. Chun J. T., Gioio A. E., Crispino M., Giuditta A., Kaplan B. B. Differential compartmentalization of mRNAs in squid giant axon. J Neurochem. 1996 Nov;67(5):1806–1812. doi: 10.1046/j.1471-4159.1996.67051806.x. [DOI] [PubMed] [Google Scholar]
  5. Court D. L., Patterson T. A., Baker T., Costantino N., Mao X., Friedman D. I. Structural and functional analyses of the transcription-translation proteins NusB and NusE. J Bacteriol. 1995 May;177(9):2589–2591. doi: 10.1128/jb.177.9.2589-2591.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Danchin A. Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. DNA Res. 1997 Feb 28;4(1):9–18. doi: 10.1093/dnares/4.1.9. [DOI] [PubMed] [Google Scholar]
  7. Delrow J. J., Gebe J. A., Schurr J. M. Comparison of hard-cylinder and screened Coulomb interactions in the modeling of supercoiled DNAs. Biopolymers. 1997 Oct 5;42(4):455–470. doi: 10.1002/(SICI)1097-0282(19971005)42:4<455::AID-BIP8>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  8. Friedman D. I., Olson E. R., Johnson L. L., Alessi D., Craven M. G. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal. Genes Dev. 1990 Dec;4(12A):2210–2222. doi: 10.1101/gad.4.12a.2210. [DOI] [PubMed] [Google Scholar]
  9. Genty N., Paly J., Edery M., Kelly P. A., Djiane J., Salesse R. Endocytosis and degradation of prolactin and its receptor in Chinese hamster ovary cells stably transfected with prolactin receptor cDNA. Mol Cell Endocrinol. 1994 Mar;99(2):221–228. doi: 10.1016/0303-7207(94)90011-6. [DOI] [PubMed] [Google Scholar]
  10. Ginard M., Lalucat J., Tümmler B., Römling U. Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol. 1997 Jan;47(1):132–143. doi: 10.1099/00207713-47-1-132. [DOI] [PubMed] [Google Scholar]
  11. Glaser P., Sharpe M. E., Raether B., Perego M., Ohlsen K., Errington J. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 1997 May 1;11(9):1160–1168. doi: 10.1101/gad.11.9.1160. [DOI] [PubMed] [Google Scholar]
  12. Gottesman S., Roche E., Zhou Y., Sauer R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998 May 1;12(9):1338–1347. doi: 10.1101/gad.12.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henkin T. M. Control of transcription termination in prokaryotes. Annu Rev Genet. 1996;30:35–57. doi: 10.1146/annurev.genet.30.1.35. [DOI] [PubMed] [Google Scholar]
  14. Henkin T. M. tRNA-directed transcription antitermination. Mol Microbiol. 1994 Aug;13(3):381–387. doi: 10.1111/j.1365-2958.1994.tb00432.x. [DOI] [PubMed] [Google Scholar]
  15. Herman C., Thévenet D., Bouloc P., Walker G. C., D'Ari R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 1998 May 1;12(9):1348–1355. doi: 10.1101/gad.12.9.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Himeno H., Sato M., Tadaki T., Fukushima M., Ushida C., Muto A. In vitro trans translation mediated by alanine-charged 10Sa RNA. J Mol Biol. 1997 May 23;268(5):803–808. doi: 10.1006/jmbi.1997.1011. [DOI] [PubMed] [Google Scholar]
  17. Huenges M., Rölz C., Gschwind R., Peteranderl R., Berglechner F., Richter G., Bacher A., Kessler H., Gemmecker G. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein. EMBO J. 1998 Jul 15;17(14):4092–4100. doi: 10.1093/emboj/17.14.4092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hénaut A., Lisacek F., Nitschké P., Moszer I., Danchin A. Global analysis of genomic texts: the distribution of AGCT tetranucleotides in the Escherichia coli and Bacillus subtilis genomes predicts translational frameshifting and ribosomal hopping in several genes. Electrophoresis. 1998 Apr;19(4):515–527. doi: 10.1002/elps.1150190411. [DOI] [PubMed] [Google Scholar]
  19. Hénaut A., Rouxel T., Gleizes A., Moszer I., Danchin A. Uneven distribution of GATC motifs in the Escherichia coli chromosome, its plasmids and its phages. J Mol Biol. 1996 Apr 5;257(3):574–585. doi: 10.1006/jmbi.1996.0186. [DOI] [PubMed] [Google Scholar]
  20. Kaberdin V. R., Miczak A., Jakobsen J. S., Lin-Chao S., McDowall K. J., von Gabain A. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11637–11642. doi: 10.1073/pnas.95.20.11637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karlin S., Mrázek J., Campbell A. M. Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol. 1997 Jun;179(12):3899–3913. doi: 10.1128/jb.179.12.3899-3913.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kebbekus P., Draper D. E., Hagerman P. Persistence length of RNA. Biochemistry. 1995 Apr 4;34(13):4354–4357. doi: 10.1021/bi00013a026. [DOI] [PubMed] [Google Scholar]
  23. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  24. Komissarova N., Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3' end of the RNA intact and extruded. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1755–1760. doi: 10.1073/pnas.94.5.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Krohn M., Wagner R. Transcriptional pausing of RNA polymerase in the presence of guanosine tetraphosphate depends on the promoter and gene sequence. J Biol Chem. 1996 Sep 27;271(39):23884–23894. doi: 10.1074/jbc.271.39.23884. [DOI] [PubMed] [Google Scholar]
  26. Kryzek R. A., Rogers P. Dual regulation by arginine of the expression of the Escherichia coli argECBH operon. J Bacteriol. 1976 Apr;126(1):348–364. doi: 10.1128/jb.126.1.348-364.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A., Borchert S. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997 Nov 20;390(6657):249–256. doi: 10.1038/36786. [DOI] [PubMed] [Google Scholar]
  28. Landais S., Gounon P., Laurent-Winter C., Mazié J. C., Danchin A., Bârzu O., Sakamoto H. Immunochemical analysis of UMP kinase from Escherichia coli. J Bacteriol. 1999 Feb;181(3):833–840. doi: 10.1128/jb.181.3.833-840.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lazdins I. B., Delannoy M., Sollner-Webb B. Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma. 1997 Jun;105(7-8):481–495. doi: 10.1007/BF02510485. [DOI] [PubMed] [Google Scholar]
  30. Lemon K. P., Grossman A. D. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science. 1998 Nov 20;282(5393):1516–1519. doi: 10.1126/science.282.5393.1516. [DOI] [PubMed] [Google Scholar]
  31. Lewis P. J., Errington J. Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology. 1996 Apr;142(Pt 4):733–740. doi: 10.1099/00221287-142-4-733. [DOI] [PubMed] [Google Scholar]
  32. Mackie G. A. Ribonuclease E is a 5'-end-dependent endonuclease. Nature. 1998 Oct 15;395(6703):720–723. doi: 10.1038/27246. [DOI] [PubMed] [Google Scholar]
  33. Moszer I., Glaser P., Danchin A. SubtiList: a relational database for the Bacillus subtilis genome. Microbiology. 1995 Feb;141(Pt 2):261–268. doi: 10.1099/13500872-141-2-261. [DOI] [PubMed] [Google Scholar]
  34. Muto A., Sato M., Tadaki T., Fukushima M., Ushida C., Himeno H. Structure and function of 10Sa RNA: trans-translation system. Biochimie. 1996;78(11-12):985–991. doi: 10.1016/s0300-9084(97)86721-1. [DOI] [PubMed] [Google Scholar]
  35. Muto A., Ushida C., Himeno H. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci. 1998 Jan;23(1):25–29. doi: 10.1016/s0968-0004(97)01159-6. [DOI] [PubMed] [Google Scholar]
  36. Médigue C., Rouxel T., Vigier P., Hénaut A., Danchin A. Evidence for horizontal gene transfer in Escherichia coli speciation. J Mol Biol. 1991 Dec 20;222(4):851–856. doi: 10.1016/0022-2836(91)90575-q. [DOI] [PubMed] [Google Scholar]
  37. Nilsen H., Yazdankhah S. P., Eftedal I., Krokan H. E. Sequence specificity for removal of uracil from U.A pairs and U.G mismatches by uracil-DNA glycosylase from Escherichia coli, and correlation with mutational hotspots. FEBS Lett. 1995 Apr 3;362(2):205–209. doi: 10.1016/0014-5793(95)00244-4. [DOI] [PubMed] [Google Scholar]
  38. Nitschké P., Guerdoux-Jamet P., Chiapello H., Faroux G., Hénaut C., Hénaut A., Danchin A. Indigo: a World-Wide-Web review of genomes and gene functions. FEMS Microbiol Rev. 1998 Oct;22(4):207–227. doi: 10.1111/j.1574-6976.1998.tb00368.x. [DOI] [PubMed] [Google Scholar]
  39. Nudler E., Gusarov I., Avetissova E., Kozlov M., Goldfarb A. Spatial organization of transcription elongation complex in Escherichia coli. Science. 1998 Jul 17;281(5375):424–428. doi: 10.1126/science.281.5375.424. [DOI] [PubMed] [Google Scholar]
  40. Nudler E., Mustaev A., Lukhtanov E., Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell. 1997 Apr 4;89(1):33–41. doi: 10.1016/s0092-8674(00)80180-4. [DOI] [PubMed] [Google Scholar]
  41. Ollivier E., Delorme M. O., Hénaut A. DosDNA occurs along yeast chromosomes, regardless of functional significance of the sequence. C R Acad Sci III. 1995 May;318(5):599–608. [PubMed] [Google Scholar]
  42. Rivals E., Delgrange O., Delahaye J. P., Dauchet M., Delorme M. O., Hénaut A., Ollivier E. Detection of significant patterns by compression algorithms: the case of approximate tandem repeats in DNA sequences. Comput Appl Biosci. 1997 Apr;13(2):131–136. doi: 10.1093/bioinformatics/13.2.131. [DOI] [PubMed] [Google Scholar]
  43. Rivetti C., Walker C., Bustamante C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J Mol Biol. 1998 Jul 3;280(1):41–59. doi: 10.1006/jmbi.1998.1830. [DOI] [PubMed] [Google Scholar]
  44. Rocha E. P., Danchin A., Viari A. Universal replication biases in bacteria. Mol Microbiol. 1999 Apr;32(1):11–16. doi: 10.1046/j.1365-2958.1999.01334.x. [DOI] [PubMed] [Google Scholar]
  45. Sagot M. F., Myers E. W. Identifying satellites and periodic repetitions in biological sequences. J Comput Biol. 1998 Fall;5(3):539–553. doi: 10.1089/cmb.1998.5.539. [DOI] [PubMed] [Google Scholar]
  46. Schlick T., Li B., Olson W. K. The influence of salt on the structure and energetics of supercoiled DNA. Biophys J. 1994 Dec;67(6):2146–2166. doi: 10.1016/S0006-3495(94)80732-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Turner L. R., Olson J. W., Lory S. The XcpR protein of Pseudomonas aeruginosa dimerizes via its N-terminus. Mol Microbiol. 1997 Dec;26(5):877–887. doi: 10.1046/j.1365-2958.1997.6201986.x. [DOI] [PubMed] [Google Scholar]
  48. Ueguchi C., Seto C., Suzuki T., Mizuno T. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J Mol Biol. 1997 Nov 28;274(2):145–151. doi: 10.1006/jmbi.1997.1381. [DOI] [PubMed] [Google Scholar]
  49. Uptain S. M., Chamberlin M. J. Escherichia coli RNA polymerase terminates transcription efficiently at rho-independent terminators on single-stranded DNA templates. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13548–13553. doi: 10.1073/pnas.94.25.13548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Uptain S. M., Kane C. M., Chamberlin M. J. Basic mechanisms of transcript elongation and its regulation. Annu Rev Biochem. 1997;66:117–172. doi: 10.1146/annurev.biochem.66.1.117. [DOI] [PubMed] [Google Scholar]
  51. Van Gilst M. R., von Hippel P. H. Assembly of the N-dependent antitermination complex of phage lambda: NusA and RNA bind independently to different unfolded domains of the N protein. J Mol Biol. 1997 Nov 28;274(2):160–173. doi: 10.1006/jmbi.1997.1389. [DOI] [PubMed] [Google Scholar]
  52. Vogel U., Jensen K. F. Effects of guanosine 3',5'-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J Biol Chem. 1994 Jun 10;269(23):16236–16241. [PubMed] [Google Scholar]
  53. Vogel U., Jensen K. F. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem. 1997 May 9;272(19):12265–12271. doi: 10.1074/jbc.272.19.12265. [DOI] [PubMed] [Google Scholar]
  54. Watanabe T., Sugita M., Sugiura M. Identification of 10Sa RNA (tmRNA) homologues from the cyanobacterium Synechococcus sp. strain PCC6301 and related organisms. Biochim Biophys Acta. 1998 Mar 4;1396(1):97–104. doi: 10.1016/s0167-4781(97)00180-2. [DOI] [PubMed] [Google Scholar]
  55. Weiss B., el-Hajj H. H. The repair of uracil-containing DNA. Basic Life Sci. 1986;38:349–356. doi: 10.1007/978-1-4615-9462-8_38. [DOI] [PubMed] [Google Scholar]
  56. Whalen W. A., Das A. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product. New Biol. 1990 Nov;2(11):975–991. [PubMed] [Google Scholar]
  57. Williams R. M., Rimsky S., Buc H. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J Bacteriol. 1996 Aug;178(15):4335–4343. doi: 10.1128/jb.178.15.4335-4343.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wu L. J., Feucht A., Errington J. Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev. 1998 May 1;12(9):1371–1380. doi: 10.1101/gad.12.9.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zacharias M., Hagerman P. J. The influence of symmetric internal loops on the flexibility of RNA. J Mol Biol. 1996 Mar 29;257(2):276–289. doi: 10.1006/jmbi.1996.0162. [DOI] [PubMed] [Google Scholar]
  60. el-Hajj H. H., Zhang H., Weiss B. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J Bacteriol. 1988 Mar;170(3):1069–1075. doi: 10.1128/jb.170.3.1069-1075.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES