Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Feb 29;355(1394):253–265. doi: 10.1098/rstb.2000.0562

The labile brain. III. Transients and spatio-temporal receptive fields.

K J Friston 1
PMCID: PMC1692727  PMID: 10724459

Abstract

In this paper we consider an approach to neuronal transients that is predicated on the information they contain. This perspective is provided by information theory, in particular the principle of maximum information transfer. It is illustrated here in application to visually evoked neuronal transients. The receptive fields that ensue concur with those observed in the real brain, predicting, almost exactly, functional segregation of the sort seen in the visual system. This information theoretical perspective can be reconciled with a selectionist stance by noting that a high mutual information among neuronal systems and the environment has, itself, adaptive value and will be subject to selective pressure, at any level one cares to consider.

Full Text

The Full Text of this article is available as a PDF (505.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell A. J., Sejnowski T. J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995 Nov;7(6):1129–1159. doi: 10.1162/neco.1995.7.6.1129. [DOI] [PubMed] [Google Scholar]
  2. Bell A. J., Sejnowski T. J. The "independent components" of natural scenes are edge filters. Vision Res. 1997 Dec;37(23):3327–3338. doi: 10.1016/s0042-6989(97)00121-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dayan P., Hinton G. E., Neal R. M., Zemel R. S. The Helmholtz machine. Neural Comput. 1995 Sep;7(5):889–904. doi: 10.1162/neco.1995.7.5.889. [DOI] [PubMed] [Google Scholar]
  4. DeYoe E. A., Van Essen D. C. Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature. 1985 Sep 5;317(6032):58–61. doi: 10.1038/317058a0. [DOI] [PubMed] [Google Scholar]
  5. Friston K. J., Frith C. D., Passingham R. E., Dolan R. J., Liddle P. F., Frackowiak R. S. Entropy and cortical activity: information theory and PET findings. Cereb Cortex. 1992 May-Jun;2(3):259–267. doi: 10.1093/cercor/2.3.259. [DOI] [PubMed] [Google Scholar]
  6. Gawne T. J., Richmond B. J. How independent are the messages carried by adjacent inferior temporal cortical neurons? J Neurosci. 1993 Jul;13(7):2758–2771. doi: 10.1523/JNEUROSCI.13-07-02758.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hubel D. H., Livingstone M. S. Segregation of form, color, and stereopsis in primate area 18. J Neurosci. 1987 Nov;7(11):3378–3415. doi: 10.1523/JNEUROSCI.07-11-03378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hubel D. H., Wiesel T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):1–59. doi: 10.1098/rspb.1977.0085. [DOI] [PubMed] [Google Scholar]
  9. Moutoussis K., Zeki S. Functional segregation and temporal hierarchy of the visual perceptive systems. Proc Biol Sci. 1997 Oct 22;264(1387):1407–1414. doi: 10.1098/rspb.1997.0196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Olshausen B. A., Field D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996 Jun 13;381(6583):607–609. doi: 10.1038/381607a0. [DOI] [PubMed] [Google Scholar]
  11. Richmond B. J., Optican L. M., Podell M., Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol. 1987 Jan;57(1):132–146. doi: 10.1152/jn.1987.57.1.132. [DOI] [PubMed] [Google Scholar]
  12. Shipp S., Zeki S. Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature. 1985 May 23;315(6017):322–325. doi: 10.1038/315322a0. [DOI] [PubMed] [Google Scholar]
  13. Tovée M. J., Rolls E. T., Treves A., Bellis R. P. Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol. 1993 Aug;70(2):640–654. doi: 10.1152/jn.1993.70.2.640. [DOI] [PubMed] [Google Scholar]
  14. van Hateren J. H., van der Schaaf A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc Biol Sci. 1998 Mar 7;265(1394):359–366. doi: 10.1098/rspb.1998.0303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES