Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Feb 29;355(1394):237–252. doi: 10.1098/rstb.2000.0561

The labile brain. II. Transients, complexity and selection.

K J Friston 1
PMCID: PMC1692732  PMID: 10724458

Abstract

The successive expression of neuronal transients is related to dynamic correlations and, as shown in this paper, to dynamic instability. Dynamic instability is a form of complexity, typical of neuronal systems, which may be crucial for adaptive brain function from two perspectives. The first is from the point of view of neuronal selection and self-organizing systems: if selective mechanisms underpin the emergence of adaptive neuronal responses then dynamic instability is, itself, necessarily adaptive. This is because dynamic instability is the source of diversity on which selection acts and is therefore subject to selective pressure. In short, the emergence of order, through selection, depends almost paradoxically on the instabilities that characterize the diversity of brain dynamics. The second perspective is provided by information theory.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott L. F., Varela J. A., Sen K., Nelson S. B. Synaptic depression and cortical gain control. Science. 1997 Jan 10;275(5297):220–224. doi: 10.1126/science.275.5297.221. [DOI] [PubMed] [Google Scholar]
  2. Bear M. F., Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986 Mar 13;320(6058):172–176. doi: 10.1038/320172a0. [DOI] [PubMed] [Google Scholar]
  3. Büchel C., Friston K. J. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex. 1997 Dec;7(8):768–778. doi: 10.1093/cercor/7.8.768. [DOI] [PubMed] [Google Scholar]
  4. Crick F., Koch C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature. 1998 Jan 15;391(6664):245–250. doi: 10.1038/34584. [DOI] [PubMed] [Google Scholar]
  5. Desmedt J. E., Tomberg C. Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett. 1994 Feb 28;168(1-2):126–129. doi: 10.1016/0304-3940(94)90432-4. [DOI] [PubMed] [Google Scholar]
  6. Edelman G. M. Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron. 1993 Feb;10(2):115–125. doi: 10.1016/0896-6273(93)90304-a. [DOI] [PubMed] [Google Scholar]
  7. Friston K. J., Tononi G., Reeke G. N., Jr, Sporns O., Edelman G. M. Value-dependent selection in the brain: simulation in a synthetic neural model. Neuroscience. 1994 Mar;59(2):229–243. doi: 10.1016/0306-4522(94)90592-4. [DOI] [PubMed] [Google Scholar]
  8. Friston K. J. Transients, metastability, and neuronal dynamics. Neuroimage. 1997 Feb;5(2):164–171. doi: 10.1006/nimg.1997.0259. [DOI] [PubMed] [Google Scholar]
  9. Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jefferys J. G., Traub R. D., Whittington M. A. Neuronal networks for induced '40 Hz' rhythms. Trends Neurosci. 1996 May;19(5):202–208. doi: 10.1016/s0166-2236(96)10023-0. [DOI] [PubMed] [Google Scholar]
  11. Le Van Quyen M., Adam C., Baulac M., Martinerie J., Varela F. J. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res. 1998 May 4;792(1):24–40. doi: 10.1016/s0006-8993(98)00102-4. [DOI] [PubMed] [Google Scholar]
  12. MacLeod K., Laurent G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science. 1996 Nov 8;274(5289):976–979. doi: 10.1126/science.274.5289.976. [DOI] [PubMed] [Google Scholar]
  13. Metherate R., Weinberger N. M. Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res. 1989 Feb 20;480(1-2):372–377. doi: 10.1016/0006-8993(89)90210-2. [DOI] [PubMed] [Google Scholar]
  14. Munk M. H., Roelfsema P. R., König P., Engel A. K., Singer W. Role of reticular activation in the modulation of intracortical synchronization. Science. 1996 Apr 12;272(5259):271–274. doi: 10.1126/science.272.5259.271. [DOI] [PubMed] [Google Scholar]
  15. Pfurtscheller G., Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):138–146. doi: 10.1016/0013-4694(79)90063-4. [DOI] [PubMed] [Google Scholar]
  16. Schiff SJ, So P, Chang T, Burke RE, Sauer T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Dec;54(6):6708–6724. doi: 10.1103/physreve.54.6708. [DOI] [PubMed] [Google Scholar]
  17. Sporns O., Gally J. A., Reeke G. N., Jr, Edelman G. M. Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7265–7269. doi: 10.1073/pnas.86.18.7265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steriade M., Amzica F., Contreras D. Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 1996 Jan;16(1):392–417. doi: 10.1523/JNEUROSCI.16-01-00392.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tallon-Baudry C., Bertrand O., Delpuech C., Permier J. Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci. 1997 Jan 15;17(2):722–734. doi: 10.1523/JNEUROSCI.17-02-00722.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tallon-Baudry C., Bertrand O., Delpuech C., Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci. 1996 Jul 1;16(13):4240–4249. doi: 10.1523/JNEUROSCI.16-13-04240.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tononi G., Sporns O., Edelman G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5033–5037. doi: 10.1073/pnas.91.11.5033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vaadia E., Haalman I., Abeles M., Bergman H., Prut Y., Slovin H., Aertsen A. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature. 1995 Feb 9;373(6514):515–518. doi: 10.1038/373515a0. [DOI] [PubMed] [Google Scholar]
  23. Vanni S., Revonsuo A., Hari R. Modulation of the parieto-occipital alpha rhythm during object detection. J Neurosci. 1997 Sep 15;17(18):7141–7147. doi: 10.1523/JNEUROSCI.17-18-07141.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES