Abstract
In this, the first of three papers, the nature of, and motivation for, neuronal transients is described in relation to characterizing brain dynamics. This paper deals with some basic aspects of neuronal dynamics, interactions, coupling and implicit neuronal codes. The second paper develops neuronal transients and nonlinear coupling in the context of dynamic instability and complexity, and suggests that instability or lability is necessary for adaptive self-organization. The final paper addresses the role of neuronal transients through information theory and the emergence of spatio-temporal receptive fields and functional specialization. By considering the brain as an ensemble of connected dynamic systems one can show that a sufficient description of neuronal dynamics comprises neuronal activity at a particular time and its recent history This history constitutes a neuronal transient. As such, transients represent a fundamental metric of neuronal interactions and, implicitly, a code employed in the functional integration of brain systems. The nature of transients, expressed conjointly in distinct neuronal populations, reflects the underlying coupling among populations. This coupling may be synchronous (and possibly oscillatory) or asynchronous. A critical distinction between synchronous and asynchronous coupling is that the former is essentially linear and the latter is nonlinear. The nonlinear nature of asynchronous coupling enables the rich, context-sensitive interactions that characterize real brain dynamics, suggesting that it plays a role in functional integration that may be as important as synchronous interactions. The distinction between linear and nonlinear coupling has fundamental implications for the analysis and characterization of neuronal interactions, most of which are predicated on linear (synchronous) coupling (e.g. cross-correlograms and coherence). Using neuromagnetic data it is shown that nonlinear (asynchronous) coupling is, in fact, more abundant and can be more significant than synchronous coupling.
Full Text
The Full Text of this article is available as a PDF (902.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles M., Bergman H., Gat I., Meilijson I., Seidemann E., Tishby N., Vaadia E. Cortical activity flips among quasi-stationary states. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8616–8620. doi: 10.1073/pnas.92.19.8616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bressler S. L., Coppola R., Nakamura R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature. 1993 Nov 11;366(6451):153–156. doi: 10.1038/366153a0. [DOI] [PubMed] [Google Scholar]
- Büchel C., Friston K. J. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex. 1997 Dec;7(8):768–778. doi: 10.1093/cercor/7.8.768. [DOI] [PubMed] [Google Scholar]
- Desmedt J. E., Tomberg C. Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett. 1994 Feb 28;168(1-2):126–129. doi: 10.1016/0304-3940(94)90432-4. [DOI] [PubMed] [Google Scholar]
- Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H. J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 1988;60(2):121–130. doi: 10.1007/BF00202899. [DOI] [PubMed] [Google Scholar]
- Engel A. K., König P., Singer W. Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9136–9140. doi: 10.1073/pnas.88.20.9136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fries P., Roelfsema P. R., Engel A. K., König P., Singer W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12699–12704. doi: 10.1073/pnas.94.23.12699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friston K. J. Another neural code? Neuroimage. 1997 Apr;5(3):213–220. doi: 10.1006/nimg.1997.0260. [DOI] [PubMed] [Google Scholar]
- Friston K. J. Neuronal transients. Proc Biol Sci. 1995 Sep 22;261(1362):401–405. doi: 10.1098/rspb.1995.0166. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Stephan K. M., Heather J. D., Frith C. D., Ioannides A. A., Liu L. C., Rugg M. D., Vieth J., Keber H., Hunter K. A multivariate analysis of evoked responses in EEG and MEG data. Neuroimage. 1996 Jun;3(3 Pt 1):167–174. doi: 10.1006/nimg.1996.0018. [DOI] [PubMed] [Google Scholar]
- Friston K. J. Transients, metastability, and neuronal dynamics. Neuroimage. 1997 Feb;5(2):164–171. doi: 10.1006/nimg.1997.0259. [DOI] [PubMed] [Google Scholar]
- Gerstein G. L., Bedenbaugh P., Aertsen M. H. Neuronal assemblies. IEEE Trans Biomed Eng. 1989 Jan;36(1):4–14. doi: 10.1109/10.16444. [DOI] [PubMed] [Google Scholar]
- Gerstein G. L., Perkel D. H. Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science. 1969 May 16;164(3881):828–830. doi: 10.1126/science.164.3881.828. [DOI] [PubMed] [Google Scholar]
- Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jefferys J. G., Traub R. D., Whittington M. A. Neuronal networks for induced '40 Hz' rhythms. Trends Neurosci. 1996 May;19(5):202–208. doi: 10.1016/s0166-2236(96)10023-0. [DOI] [PubMed] [Google Scholar]
- Jürgens E., Rösler F., Henninghausen E., Heil M. Stimulus-induced gamma oscillations: harmonics of alpha activity? Neuroreport. 1995 Mar 27;6(5):813–816. doi: 10.1097/00001756-199503270-00027. [DOI] [PubMed] [Google Scholar]
- Lumer E. D., Edelman G. M., Tononi G. Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. Cereb Cortex. 1997 Apr-May;7(3):228–236. doi: 10.1093/cercor/7.3.228. [DOI] [PubMed] [Google Scholar]
- Milner P. M. A model for visual shape recognition. Psychol Rev. 1974 Nov;81(6):521–535. doi: 10.1037/h0037149. [DOI] [PubMed] [Google Scholar]
- Phillips W. A., Singer W. In search of common foundations for cortical computation. Behav Brain Sci. 1997 Dec;20(4):657–722. doi: 10.1017/s0140525x9700160x. [DOI] [PubMed] [Google Scholar]
- Posner M. I., Petersen S. E. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42. doi: 10.1146/annurev.ne.13.030190.000325. [DOI] [PubMed] [Google Scholar]
- Richmond B. J., Optican L. M., Podell M., Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol. 1987 Jan;57(1):132–146. doi: 10.1152/jn.1987.57.1.132. [DOI] [PubMed] [Google Scholar]
- Riehle A., Grün S., Diesmann M., Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science. 1997 Dec 12;278(5345):1950–1953. doi: 10.1126/science.278.5345.1950. [DOI] [PubMed] [Google Scholar]
- Rockland K. S., Pandya D. N. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 1979 Dec 21;179(1):3–20. doi: 10.1016/0006-8993(79)90485-2. [DOI] [PubMed] [Google Scholar]
- Roelfsema P. R., König P., Engel A. K., Sireteanu R., Singer W. Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci. 1994 Nov 1;6(11):1645–1655. doi: 10.1111/j.1460-9568.1994.tb00556.x. [DOI] [PubMed] [Google Scholar]
- Schiff SJ, So P, Chang T, Burke RE, Sauer T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Dec;54(6):6708–6724. doi: 10.1103/physreve.54.6708. [DOI] [PubMed] [Google Scholar]
- Selemon L. D., Goldman-Rakic P. S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci. 1988 Nov;8(11):4049–4068. doi: 10.1523/JNEUROSCI.08-11-04049.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shadlen M. N., Newsome W. T. Noise, neural codes and cortical organization. Curr Opin Neurobiol. 1994 Aug;4(4):569–579. doi: 10.1016/0959-4388(94)90059-0. [DOI] [PubMed] [Google Scholar]
- Sporns O., Gally J. A., Reeke G. N., Jr, Edelman G. M. Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7265–7269. doi: 10.1073/pnas.86.18.7265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tononi G., Sporns O., Edelman G. M. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex. 1992 Jul-Aug;2(4):310–335. doi: 10.1093/cercor/2.4.310. [DOI] [PubMed] [Google Scholar]
- Treue S., Maunsell J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 8;382(6591):539–541. doi: 10.1038/382539a0. [DOI] [PubMed] [Google Scholar]
- Vaadia E., Haalman I., Abeles M., Bergman H., Prut Y., Slovin H., Aertsen A. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature. 1995 Feb 9;373(6514):515–518. doi: 10.1038/373515a0. [DOI] [PubMed] [Google Scholar]
- Worsley K. J., Friston K. J. Analysis of fMRI time-series revisited--again. Neuroimage. 1995 Sep;2(3):173–181. doi: 10.1006/nimg.1995.1023. [DOI] [PubMed] [Google Scholar]
- deCharms R. C., Merzenich M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature. 1996 Jun 13;381(6583):610–613. doi: 10.1038/381610a0. [DOI] [PubMed] [Google Scholar]