Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Mar 29;355(1395):369–371. doi: 10.1098/rstb.2000.0576

On immunological memory.

R M Zinkernagel 1
PMCID: PMC1692736  PMID: 10794057

Abstract

Immunological memory may not represent a special characteristic of lymphocytes but simply reflect low-level responses driven by antigen that is re-encountered or persists within the host. T-cell memory is important to control persistent infections within the individual host and cannot be transmitted to offspring because of MHC polymorphism and MHC-restricted T-cell recognition. In contrast, antibody memory is transmissible from mother to offspring and may function essentially to protect offspring during the phase of physiological immuno-incompetence before, at and shortly after birth. This physiological immuno-incompetence is a result of MHC polymorphism and the dangers of the graft-versus-host and host-versus-graft reaction between mother and embryo, which necessitate immunosuppression of the mother and immuno-incompetence of the offspring. One may argue therefore that immunological memory of transmissible immunological experience is the basis on which MHC-restricted T-cell recognition could develop or coevolve.

Full Text

The Full Text of this article is available as a PDF (81.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R. Immunological memory against viruses. Semin Immunol. 1992 Apr;4(2):105–109. [PubMed] [Google Scholar]
  2. Aichele P., Brduscha-Riem K., Oehen S., Odermatt B., Zinkernagel R. M., Hengartner H., Pircher H. Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity. 1997 May;6(5):519–529. doi: 10.1016/s1074-7613(00)80340-4. [DOI] [PubMed] [Google Scholar]
  3. Bachmann M. F., Zinkernagel R. M. Neutralizing antiviral B cell responses. Annu Rev Immunol. 1997;15:235–270. doi: 10.1146/annurev.immunol.15.1.235. [DOI] [PubMed] [Google Scholar]
  4. Baczko K., Carter M. J., Billeter M., ter Meulen V. Measles virus gene expression in subacute sclerosing panencephalitis. Virus Res. 1984 Oct;1(7):585–595. doi: 10.1016/0168-1702(84)90015-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerhard W., Mozdzanowska K., Furchner M., Washko G., Maiese K. Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol Rev. 1997 Oct;159:95–103. doi: 10.1111/j.1600-065x.1997.tb01009.x. [DOI] [PubMed] [Google Scholar]
  6. Gray D. Immunological memory. Annu Rev Immunol. 1993;11:49–77. doi: 10.1146/annurev.iy.11.040193.000405. [DOI] [PubMed] [Google Scholar]
  7. Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray D., Skarvall H. B-cell memory is short-lived in the absence of antigen. Nature. 1988 Nov 3;336(6194):70–73. doi: 10.1038/336070a0. [DOI] [PubMed] [Google Scholar]
  9. Gupta S. C., Hengartner H., Zinkernagel R. M. Primary antibody responses to a well-defined and unique hapten are not enhanced by preimmunization with carrier: analysis in a viral model. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2604–2608. doi: 10.1073/pnas.83.8.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katayama Y., Hotta H., Nishimura A., Tatsuno Y., Homma M. Detection of measles virus nucleoprotein mRNA in autopsied brain tissues. J Gen Virol. 1995 Dec;76(Pt 12):3201–3204. doi: 10.1099/0022-1317-76-12-3201. [DOI] [PubMed] [Google Scholar]
  11. Kündig T. M., Bachmann M. F., Ohashi P. S., Pircher H., Hengartner H., Zinkernagel R. M. On T cell memory: arguments for antigen dependence. Immunol Rev. 1996 Apr;150:63–90. doi: 10.1111/j.1600-065x.1996.tb00696.x. [DOI] [PubMed] [Google Scholar]
  12. Liang S., Mozdzanowska K., Palladino G., Gerhard W. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J Immunol. 1994 Feb 15;152(4):1653–1661. [PubMed] [Google Scholar]
  13. Mackaness G. B. Resistance to intracellular infection. J Infect Dis. 1971 Apr;123(4):439–445. doi: 10.1093/infdis/123.4.439. [DOI] [PubMed] [Google Scholar]
  14. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nossal G. J., Austin C. M., Ada G. L. Antigens in immunity. VII. Analysis of immunological memory. Immunology. 1965 Oct;9(4):333–348. [PMC free article] [PubMed] [Google Scholar]
  16. Oehen S., Hengartner H., Zinkernagel R. M. Vaccination for disease. Science. 1991 Jan 11;251(4990):195–198. doi: 10.1126/science.1824801. [DOI] [PubMed] [Google Scholar]
  17. Slifka M. K., Matloubian M., Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol. 1995 Mar;69(3):1895–1902. doi: 10.1128/jvi.69.3.1895-1902.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tew J. G., Kosco M. H., Burton G. F., Szakal A. K. Follicular dendritic cells as accessory cells. Immunol Rev. 1990 Oct;117:185–211. doi: 10.1111/j.1600-065x.1990.tb00573.x. [DOI] [PubMed] [Google Scholar]
  19. Zinkernagel R. M. Antiviral T-cell memory? Curr Top Microbiol Immunol. 1990;159:65–77. doi: 10.1007/978-3-642-75244-5_4. [DOI] [PubMed] [Google Scholar]
  20. Zinkernagel R. M. Immunology taught by viruses. Science. 1996 Jan 12;271(5246):173–178. doi: 10.1126/science.271.5246.173. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES