Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Mar 29;355(1395):373–379. doi: 10.1098/rstb.2000.0577

Antiviral CD4 and CD8 T-cell memory: differences in the size of the response and activation requirements.

J K Whitmire 1, K Murali-Krishna 1, J Altman 1, R Ahmed 1
PMCID: PMC1692741  PMID: 10794058

Abstract

Following acute lymphocytic choriomeningitis virus (LCMV) infection, there is a potent antiviral CD8 T-cell response that eliminates the infection. This initial CD8 T-cell response is followed by a period of memory during which elevated numbers of virus-specific CD8 T cells remain in the mouse. CD4 T cells are also activated after LCMV infection, but relatively less is known about the magnitude and duration of the CD4 response. In this study, we used intracellular staining for interferon-gamma to measure both CD4 and CD8 responses in the same mice at the single cell level. After LCMV infection, there was an increase in the number of activated CD4 T cells and an associated increase in the number of virus-specific CD4 T cells. At the peak of this expansion phase, the frequency of virus-specific CD4 T cells was 1 in 20 (0.5-1.0 x 10(6) per spleen). Like the CD8 response, long-term CD4 memory could be found up to a year after the infection with frequencies of approximately 1 in 260 (0.5-1.5 x 10(5) per spleen). However, the magnitude of virus-specific CD8 T cells was greater than virus-specific CD4 T cells during all phases of the immune response (expansion, death, and memory). At day 8, there were 20- to 35-fold more virus-specific CD8 T cells than CD4 T cells. This initial difference in cell number lasted into the memory phase as there remained a ten- to 20-fold difference in the CD8 and CD4 responses. These results highlight the importance of the expansion phase in determining the size of the memory T-cell pool. In addition to the difference in the magnitude, the activation requirements of CD8 and CD4 T-cell responses were different: CD8 T responses were not affected by blockade of CD40-CD40 ligand interaction whereas CD4 responses were reduced 90%. So while there is long-term memory in both the CD8 and CD4 compartments, the rules regulating the activation of CD8 and CD4 T cells and the overall magnitude of the responses are different.

Full Text

The Full Text of this article is available as a PDF (610.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., Butler L. D., Bhatti L. T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibody responses. J Virol. 1988 Jun;62(6):2102–2106. doi: 10.1128/jvi.62.6.2102-2106.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996 Apr 5;272(5258):54–60. doi: 10.1126/science.272.5258.54. [DOI] [PubMed] [Google Scholar]
  3. Ahmed R., Salmi A., Butler L. D., Chiller J. M., Oldstone M. B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J Exp Med. 1984 Aug 1;160(2):521–540. doi: 10.1084/jem.160.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asano M. S., Ahmed R. CD8 T cell memory in B cell-deficient mice. J Exp Med. 1996 May 1;183(5):2165–2174. doi: 10.1084/jem.183.5.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bi Z., Barna M., Komatsu T., Reiss C. S. Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol. 1995 Oct;69(10):6466–6472. doi: 10.1128/jvi.69.10.6466-6472.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borrow P., Lewicki H., Wei X., Horwitz M. S., Peffer N., Meyers H., Nelson J. A., Gairin J. E., Hahn B. H., Oldstone M. B. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med. 1997 Feb;3(2):205–211. doi: 10.1038/nm0297-205. [DOI] [PubMed] [Google Scholar]
  7. Borrow P., Tishon A., Lee S., Xu J., Grewal I. S., Oldstone M. B., Flavell R. A. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J Exp Med. 1996 May 1;183(5):2129–2142. doi: 10.1084/jem.183.5.2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butz E. A., Bevan M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity. 1998 Feb;8(2):167–175. doi: 10.1016/s1074-7613(00)80469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Byrne J. A., Ahmed R., Oldstone M. B. Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus. I. Generation and recognition of virus strains and H-2b mutants. J Immunol. 1984 Jul;133(1):433–439. [PubMed] [Google Scholar]
  10. Callan M. F., Steven N., Krausa P., Wilson J. D., Moss P. A., Gillespie G. M., Bell J. I., Rickinson A. B., McMichael A. J. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med. 1996 Aug;2(8):906–911. doi: 10.1038/nm0896-906. [DOI] [PubMed] [Google Scholar]
  11. Campbell K. A., Ovendale P. J., Kennedy M. K., Fanslow W. C., Reed S. G., Maliszewski C. R. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity. 1996 Mar;4(3):283–289. doi: 10.1016/s1074-7613(00)80436-7. [DOI] [PubMed] [Google Scholar]
  12. Cardin R. D., Brooks J. W., Sarawar S. R., Doherty P. C. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med. 1996 Sep 1;184(3):863–871. doi: 10.1084/jem.184.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cousens L. P., Orange J. S., Biron C. A. Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection. J Immunol. 1995 Dec 15;155(12):5690–5699. [PubMed] [Google Scholar]
  14. Doherty P. C., Tripp R. A., Hamilton-Easton A. M., Cardin R. D., Woodland D. L., Blackman M. A. Tuning into immunological dissonance: an experimental model for infectious mononucleosis. Curr Opin Immunol. 1997 Aug;9(4):477–483. doi: 10.1016/s0952-7915(97)80098-2. [DOI] [PubMed] [Google Scholar]
  15. Fung-Leung W. P., Kündig T. M., Zinkernagel R. M., Mak T. W. Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J Exp Med. 1991 Dec 1;174(6):1425–1429. doi: 10.1084/jem.174.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grewal I. S., Xu J., Flavell R. A. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature. 1995 Dec 7;378(6557):617–620. doi: 10.1038/378617a0. [DOI] [PubMed] [Google Scholar]
  17. Jennings S. R., Bonneau R. H., Smith P. M., Wolcott R. M., Chervenak R. CD4-positive T lymphocytes are required for the generation of the primary but not the secondary CD8-positive cytolytic T lymphocyte response to herpes simplex virus in C57BL/6 mice. Cell Immunol. 1991 Mar;133(1):234–252. doi: 10.1016/0008-8749(91)90194-g. [DOI] [PubMed] [Google Scholar]
  18. Kamanaka M., Yu P., Yasui T., Yoshida K., Kawabe T., Horii T., Kishimoto T., Kikutani H. Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity. 1996 Mar;4(3):275–281. doi: 10.1016/s1074-7613(00)80435-5. [DOI] [PubMed] [Google Scholar]
  19. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kägi D., Ledermann B., Bürki K., Seiler P., Odermatt B., Olsen K. J., Podack E. R., Zinkernagel R. M., Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994 May 5;369(6475):31–37. doi: 10.1038/369031a0. [DOI] [PubMed] [Google Scholar]
  21. Lau L. L., Jamieson B. D., Somasundaram T., Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994 Jun 23;369(6482):648–652. doi: 10.1038/369648a0. [DOI] [PubMed] [Google Scholar]
  22. Matloubian M., Concepcion R. J., Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994 Dec;68(12):8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moskophidis D., Cobbold S. P., Waldmann H., Lehmann-Grube F. Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2+ T lymphocytes mediate clearance of virus and regulate the antiviral antibody response. J Virol. 1987 Jun;61(6):1867–1874. doi: 10.1128/jvi.61.6.1867-1874.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murali-Krishna K., Altman J. D., Suresh M., Sourdive D. J., Zajac A. J., Miller J. D., Slansky J., Ahmed R. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity. 1998 Feb;8(2):177–187. doi: 10.1016/s1074-7613(00)80470-7. [DOI] [PubMed] [Google Scholar]
  25. Murali-Krishna K., Lau L. L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999 Nov 12;286(5443):1377–1381. doi: 10.1126/science.286.5443.1377. [DOI] [PubMed] [Google Scholar]
  26. Oldstone M. B. Virus-lymphoid cell interactions. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12756–12758. doi: 10.1073/pnas.93.23.12756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Oxenius A., Campbell K. A., Maliszewski C. R., Kishimoto T., Kikutani H., Hengartner H., Zinkernagel R. M., Bachmann M. F. CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med. 1996 May 1;183(5):2209–2218. doi: 10.1084/jem.183.5.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pantaleo G., Demarest J. F., Soudeyns H., Graziosi C., Denis F., Adelsberger J. W., Borrow P., Saag M. S., Shaw G. M., Sekaly R. P. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature. 1994 Aug 11;370(6489):463–467. doi: 10.1038/370463a0. [DOI] [PubMed] [Google Scholar]
  29. Pantaleo G., Soudeyns H., Demarest J. F., Vaccarezza M., Graziosi C., Paolucci S., Daucher M., Cohen O. J., Denis F., Biddison W. E. Evidence for rapid disappearance of initially expanded HIV-specific CD8+ T cell clones during primary HIV infection. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9848–9853. doi: 10.1073/pnas.94.18.9848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Renshaw B. R., Fanslow W. C., 3rd, Armitage R. J., Campbell K. A., Liggitt D., Wright B., Davison B. L., Maliszewski C. R. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med. 1994 Nov 1;180(5):1889–1900. doi: 10.1084/jem.180.5.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rosenberg E. S., Billingsley J. M., Caliendo A. M., Boswell S. L., Sax P. E., Kalams S. A., Walker B. D. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997 Nov 21;278(5342):1447–1450. doi: 10.1126/science.278.5342.1447. [DOI] [PubMed] [Google Scholar]
  32. Selin L. K., Vergilis K., Welsh R. M., Nahill S. R. Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J Exp Med. 1996 Jun 1;183(6):2489–2499. doi: 10.1084/jem.183.6.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shuford W. W., Klussman K., Tritchler D. D., Loo D. T., Chalupny J., Siadak A. W., Brown T. J., Emswiler J., Raecho H., Larsen C. P. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997 Jul 7;186(1):47–55. doi: 10.1084/jem.186.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Slifka M. K., Whitmire J. K., Ahmed R. Bone marrow contains virus-specific cytotoxic T lymphocytes. Blood. 1997 Sep 1;90(5):2103–2108. [PubMed] [Google Scholar]
  35. Soong L., Xu J. C., Grewal I. S., Kima P., Sun J., Longley B. J., Jr, Ruddle N. H., McMahon-Pratt D., Flavell R. A. Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity. 1996 Mar;4(3):263–273. doi: 10.1016/s1074-7613(00)80434-3. [DOI] [PubMed] [Google Scholar]
  36. Sourdive D. J., Murali-Krishna K., Altman J. D., Zajac A. J., Whitmire J. K., Pannetier C., Kourilsky P., Evavold B., Sette A., Ahmed R. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J Exp Med. 1998 Jul 6;188(1):71–82. doi: 10.1084/jem.188.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steven N. M., Annels N. E., Kumar A., Leese A. M., Kurilla M. G., Rickinson A. B. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med. 1997 May 5;185(9):1605–1617. doi: 10.1084/jem.185.9.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sunil-Chandra N. P., Arno J., Fazakerley J., Nash A. A. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol. 1994 Oct;145(4):818–826. [PMC free article] [PubMed] [Google Scholar]
  39. Tan J. T., Whitmire J. K., Ahmed R., Pearson T. C., Larsen C. P. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol. 1999 Nov 1;163(9):4859–4868. [PubMed] [Google Scholar]
  40. Viola A., Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science. 1996 Jul 5;273(5271):104–106. doi: 10.1126/science.273.5271.104. [DOI] [PubMed] [Google Scholar]
  41. Whitmire J. K., Asano M. S., Murali-Krishna K., Suresh M., Ahmed R. Long-term CD4 Th1 and Th2 memory following acute lymphocytic choriomeningitis virus infection. J Virol. 1998 Oct;72(10):8281–8288. doi: 10.1128/jvi.72.10.8281-8288.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Whitmire J. K., Slifka M. K., Grewal I. S., Flavell R. A., Ahmed R. CD40 ligand-deficient mice generate a normal primary cytotoxic T-lymphocyte response but a defective humoral response to a viral infection. J Virol. 1996 Dec;70(12):8375–8381. doi: 10.1128/jvi.70.12.8375-8381.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wills M. R., Carmichael A. J., Mynard K., Jin X., Weekes M. P., Plachter B., Sissons J. G. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol. 1996 Nov;70(11):7569–7579. doi: 10.1128/jvi.70.11.7569-7579.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Xu J., Foy T. M., Laman J. D., Elliott E. A., Dunn J. J., Waldschmidt T. J., Elsemore J., Noelle R. J., Flavell R. A. Mice deficient for the CD40 ligand. Immunity. 1994 Aug;1(5):423–431. doi: 10.1016/1074-7613(94)90073-6. [DOI] [PubMed] [Google Scholar]
  45. Zajac A. J., Blattman J. N., Murali-Krishna K., Sourdive D. J., Suresh M., Altman J. D., Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998 Dec 21;188(12):2205–2213. doi: 10.1084/jem.188.12.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. von Herrath M. G., Yokoyama M., Dockter J., Oldstone M. B., Whitton J. L. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol. 1996 Feb;70(2):1072–1079. doi: 10.1128/jvi.70.2.1072-1079.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES