Abstract
Kinesin, a microtubule-based motor, and myosin, an actin-based motor, share a similar core structure, indicating that they arose from a common ancestor. However, kinesin lacks the long lever-arm domain that is believed to drive the myosin power stroke. Here, we present evidence that a much smaller region of ca. 10-40 amino acids serves as a mechanical element for kinesin motor proteins. These 'neck regions' are class conserved and have distinct structures in plus-end and minus-end-directed kinesin motors. Mutagenesis studies also indicate that the neck regions are involved in coupling ATP hydrolysis and energy into directional motion along the microtubule. We suggest that the kinesin necks drive motion by undergoing a conformational change in which they detach and re-dock onto the catalytic core during the ATPase cycle. Thus, kinesin and myosin have evolved unique mechanical elements that amplify small, nucleotide-dependent conformational changes that occur in their similar catalytic cores.
Full Text
The Full Text of this article is available as a PDF (338.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos L. A., Hirose K. The structure of microtubule-motor complexes. Curr Opin Cell Biol. 1997 Feb;9(1):4–11. doi: 10.1016/s0955-0674(97)80145-7. [DOI] [PubMed] [Google Scholar]
- Berliner E., Young E. C., Anderson K., Mahtani H. K., Gelles J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature. 1995 Feb 23;373(6516):718–721. doi: 10.1038/373718a0. [DOI] [PubMed] [Google Scholar]
- Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
- Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
- Case R. B., Rice S., Hart C. L., Ly B., Vale R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr Biol. 2000 Feb 10;10(3):157–160. doi: 10.1016/s0960-9822(00)00316-x. [DOI] [PubMed] [Google Scholar]
- Desai A., Verma S., Mitchison T. J., Walczak C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell. 1999 Jan 8;96(1):69–78. doi: 10.1016/s0092-8674(00)80960-5. [DOI] [PubMed] [Google Scholar]
- Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
- Endow S. A., Waligora K. W. Determinants of kinesin motor polarity. Science. 1998 Aug 21;281(5380):1200–1202. doi: 10.1126/science.281.5380.1200. [DOI] [PubMed] [Google Scholar]
- Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
- Gulick A. M., Song H., Endow S. A., Rayment I. X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution. Biochemistry. 1998 Feb 17;37(7):1769–1776. doi: 10.1021/bi972504o. [DOI] [PubMed] [Google Scholar]
- Hackney D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865–6869. doi: 10.1073/pnas.91.15.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock W. O., Howard J. Processivity of the motor protein kinesin requires two heads. J Cell Biol. 1998 Mar 23;140(6):1395–1405. doi: 10.1083/jcb.140.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrington W. F. On the origin of the contractile force in skeletal muscle. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5066–5070. doi: 10.1073/pnas.76.10.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henningsen U., Schliwa M. Reversal in the direction of movement of a molecular motor. Nature. 1997 Sep 4;389(6646):93–96. doi: 10.1038/38022. [DOI] [PubMed] [Google Scholar]
- Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
- Hirose K., Lockhart A., Cross R. A., Amos L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9539–9544. doi: 10.1073/pnas.93.18.9539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoenger A., Milligan R. A. Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry. J Mol Biol. 1997 Feb 7;265(5):553–564. doi: 10.1006/jmbi.1996.0757. [DOI] [PubMed] [Google Scholar]
- Hoenger A., Sablin E. P., Vale R. D., Fletterick R. J., Milligan R. A. Three-dimensional structure of a tubulin-motor-protein complex. Nature. 1995 Jul 20;376(6537):271–274. doi: 10.1038/376271a0. [DOI] [PubMed] [Google Scholar]
- Hoenger A., Sack S., Thormählen M., Marx A., Müller J., Gross H., Mandelkow E. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J Cell Biol. 1998 Apr 20;141(2):419–430. doi: 10.1083/jcb.141.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Ishijima A., Harada Y., Kojima H., Funatsu T., Higuchi H., Yanagida T. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem Biophys Res Commun. 1994 Mar 15;199(2):1057–1063. doi: 10.1006/bbrc.1994.1336. [DOI] [PubMed] [Google Scholar]
- Kozielski F., Sack S., Marx A., Thormählen M., Schönbrunn E., Biou V., Thompson A., Mandelkow E. M., Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell. 1997 Dec 26;91(7):985–994. doi: 10.1016/s0092-8674(00)80489-4. [DOI] [PubMed] [Google Scholar]
- Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kull F. J., Vale R. D., Fletterick R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil. 1998 Nov;19(8):877–886. doi: 10.1023/a:1005489907021. [DOI] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
- Rice S., Lin A. W., Safer D., Hart C. L., Naber N., Carragher B. O., Cain S. M., Pechatnikova E., Wilson-Kubalek E. M., Whittaker M. A structural change in the kinesin motor protein that drives motility. Nature. 1999 Dec 16;402(6763):778–784. doi: 10.1038/45483. [DOI] [PubMed] [Google Scholar]
- Romberg L., Pierce D. W., Vale R. D. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol. 1998 Mar 23;140(6):1407–1416. doi: 10.1083/jcb.140.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sablin E. P., Case R. B., Dai S. C., Hart C. L., Ruby A., Vale R. D., Fletterick R. J. Direction determination in the minus-end-directed kinesin motor ncd. Nature. 1998 Oct 22;395(6704):813–816. doi: 10.1038/27463. [DOI] [PubMed] [Google Scholar]
- Sablin E. P., Kull F. J., Cooke R., Vale R. D., Fletterick R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature. 1996 Apr 11;380(6574):555–559. doi: 10.1038/380555a0. [DOI] [PubMed] [Google Scholar]
- Sack S., Müller J., Marx A., Thormählen M., Mandelkow E. M., Brady S. T., Mandelkow E. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry. 1997 Dec 23;36(51):16155–16165. doi: 10.1021/bi9722498. [DOI] [PubMed] [Google Scholar]
- Sosa H., Dias D. P., Hoenger A., Whittaker M., Wilson-Kubalek E., Sablin E., Fletterick R. J., Vale R. D., Milligan R. A. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell. 1997 Jul 25;90(2):217–224. doi: 10.1016/s0092-8674(00)80330-x. [DOI] [PubMed] [Google Scholar]
- Stewart R. J., Thaler J. P., Goldstein L. S. Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila ncd protein. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5209–5213. doi: 10.1073/pnas.90.11.5209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Yasunaga T., Ohkura R., Wakabayashi T., Sutoh K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature. 1998 Nov 26;396(6709):380–383. doi: 10.1038/24640. [DOI] [PubMed] [Google Scholar]
- Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Fletterick R. J. The design plan of kinesin motors. Annu Rev Cell Dev Biol. 1997;13:745–777. doi: 10.1146/annurev.cellbio.13.1.745. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Funatsu T., Pierce D. W., Romberg L., Harada Y., Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature. 1996 Apr 4;380(6573):451–453. doi: 10.1038/380451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol. 1996 Oct;135(2):291–302. doi: 10.1083/jcb.135.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
- Woehlke G., Ruby A. K., Hart C. L., Ly B., Hom-Booher N., Vale R. D. Microtubule interaction site of the kinesin motor. Cell. 1997 Jul 25;90(2):207–216. doi: 10.1016/s0092-8674(00)80329-3. [DOI] [PubMed] [Google Scholar]