Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Apr 29;355(1396):523–528. doi: 10.1098/rstb.2000.0593

How Fo-ATPase generates rotary torque.

G Oster 1, H Wang 1, M Grabe 1
PMCID: PMC1692753  PMID: 10836505

Abstract

The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding change mechanism. Here we explain the principle by which an IMF generates this rotary torque in the Fo ion engine.

Full Text

The Full Text of this article is available as a PDF (640.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Davies J. M., Hunt I., Sanders D. Vacuolar H(+)-pumping ATPase variable transport coupling ratio controlled by pH. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8547–8551. doi: 10.1073/pnas.91.18.8547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dimroth P., Kaim G., Matthey U. The motor of the ATP synthase. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):87–92. doi: 10.1016/s0005-2728(98)00047-4. [DOI] [PubMed] [Google Scholar]
  4. Dimroth P., Wang H., Grabe M., Oster G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4924–4929. doi: 10.1073/pnas.96.9.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elston T., Wang H., Oster G. Energy transduction in ATP synthase. Nature. 1998 Jan 29;391(6666):510–513. doi: 10.1038/35185. [DOI] [PubMed] [Google Scholar]
  6. Fillingame R. H., Jones P. C., Jiang W., Valiyaveetil F. I., Dmitriev O. Y. Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):135–142. doi: 10.1016/s0005-2728(98)00053-x. [DOI] [PubMed] [Google Scholar]
  7. Girvin M. E., Rastogi V. K., Abildgaard F., Markley J. L., Fillingame R. H. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry. 1998 Jun 23;37(25):8817–8824. doi: 10.1021/bi980511m. [DOI] [PubMed] [Google Scholar]
  8. Jones P. C., Fillingame R. H. Genetic fusions of subunit c in the F0 sector of H+-transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. J Biol Chem. 1998 Nov 6;273(45):29701–29705. doi: 10.1074/jbc.273.45.29701. [DOI] [PubMed] [Google Scholar]
  9. Jones P. C., Jiang W., Fillingame R. H. Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the Escherichia coli F1F0 ATP synthase. J Biol Chem. 1998 Jul 3;273(27):17178–17185. doi: 10.1074/jbc.273.27.17178. [DOI] [PubMed] [Google Scholar]
  10. Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
  11. Kaim G., Dimroth P. ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J. 1999 Aug 2;18(15):4118–4127. doi: 10.1093/emboj/18.15.4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaim G., Dimroth P. ATP synthesis by the F1Fo ATP synthase of Escherichia coli is obligatorily dependent on the electric potential. FEBS Lett. 1998 Aug 28;434(1-2):57–60. doi: 10.1016/s0014-5793(98)00969-7. [DOI] [PubMed] [Google Scholar]
  13. Kaim G., Dimroth P. Voltage-generated torque drives the motor of the ATP synthase. EMBO J. 1998 Oct 15;17(20):5887–5895. doi: 10.1093/emboj/17.20.5887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaim G., Matthey U., Dimroth P. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. EMBO J. 1998 Feb 2;17(3):688–695. doi: 10.1093/emboj/17.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matthey U., Kaim G., Braun D., Wüthrich K., Dimroth P. NMR studies of subunit c of the ATP synthase from Propionigenium modestum in dodecylsulphate micelles. Eur J Biochem. 1999 Apr;261(2):459–467. doi: 10.1046/j.1432-1327.1999.00288.x. [DOI] [PubMed] [Google Scholar]
  16. Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science. 1979 Dec 7;206(4423):1148–1159. doi: 10.1126/science.388618. [DOI] [PubMed] [Google Scholar]
  17. Peskin C. S., Odell G. M., Oster G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993 Jul;65(1):316–324. doi: 10.1016/S0006-3495(93)81035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stock D., Leslie A. G., Walker J. E. Molecular architecture of the rotary motor in ATP synthase. Science. 1999 Nov 26;286(5445):1700–1705. doi: 10.1126/science.286.5445.1700. [DOI] [PubMed] [Google Scholar]
  19. Vik S. B., Antonio B. J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed] [Google Scholar]
  20. Wang H., Oster G. Energy transduction in the F1 motor of ATP synthase. Nature. 1998 Nov 19;396(6708):279–282. doi: 10.1038/24409. [DOI] [PubMed] [Google Scholar]
  21. Yasuda R., Noji H., Kinosita K., Jr, Yoshida M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell. 1998 Jun 26;93(7):1117–1124. doi: 10.1016/s0092-8674(00)81456-7. [DOI] [PubMed] [Google Scholar]
  22. Yokoyama K., Muneyuki E., Amano T., Mizutani S., Yoshida M., Ishida M., Ohkuma S. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J Biol Chem. 1998 Aug 7;273(32):20504–20510. doi: 10.1074/jbc.273.32.20504. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES