Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Apr 29;355(1396):459–464. doi: 10.1098/rstb.2000.0587

The conformational cycle of kinesin.

R A Cross 1, I Crevel 1, N J Carter 1, M C Alonso 1, K Hirose 1, L A Amos 1
PMCID: PMC1692756  PMID: 10836499

Abstract

The stepping mechanism of kinesin can be thought of as a programme of conformational changes. We briefly review protein chemical, electron microscopic and transient kinetic evidence for conformational changes, and working from this evidence, outline a model for the mechanism. In the model, both kinesin heads initially trap Mg x ADP. Microtubule binding releases ADP from one head only (the trailing head). Subsequent ATP binding and hydrolysis by the trailing head progressively accelerate attachment of the leading head, by positioning it closer to its next site. Once attached, the leading head releases its ADP and exerts a sustained pull on the trailing head. The rate of closure of the molecular gate which traps ADP on the trailing head governs its detachment rate. A speculative but crucial coordinating feature is that this rate is strain sensitive, slowing down under negative strain and accelerating under positive strain.

Full Text

The Full Text of this article is available as a PDF (501.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso M. C., van Damme J., Vandekerckhove J., Cross R. A. Proteolytic mapping of kinesin/ncd-microtubule interface: nucleotide-dependent conformational changes in the loops L8 and L12. EMBO J. 1998 Feb 16;17(4):945–951. doi: 10.1093/emboj/17.4.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnal I., Wade R. H. Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure. 1998 Jan 15;6(1):33–38. doi: 10.1016/s0969-2126(98)00005-7. [DOI] [PubMed] [Google Scholar]
  3. Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
  4. Coy D. L., Wagenbach M., Howard J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J Biol Chem. 1999 Feb 5;274(6):3667–3671. doi: 10.1074/jbc.274.6.3667. [DOI] [PubMed] [Google Scholar]
  5. Crevel I. M., Lockhart A., Cross R. A. Kinetic evidence for low chemical processivity in ncd and Eg5. J Mol Biol. 1997 Oct 17;273(1):160–170. doi: 10.1006/jmbi.1997.1319. [DOI] [PubMed] [Google Scholar]
  6. Crevel I. M., Lockhart A., Cross R. A. Weak and strong states of kinesin and ncd. J Mol Biol. 1996 Mar 22;257(1):66–76. doi: 10.1006/jmbi.1996.0147. [DOI] [PubMed] [Google Scholar]
  7. Cross R. A. Molecular motors: the natural economy of kinesin. Curr Biol. 1997 Oct 1;7(10):R631–R633. doi: 10.1016/s0960-9822(06)00320-4. [DOI] [PubMed] [Google Scholar]
  8. Cross R. A. Reversing the kinesin ratchet--a diverting tail. Nature. 1997 Sep 4;389(6646):15–16. doi: 10.1038/37864. [DOI] [PubMed] [Google Scholar]
  9. Endow S. A., Waligora K. W. Determinants of kinesin motor polarity. Science. 1998 Aug 21;281(5380):1200–1202. doi: 10.1126/science.281.5380.1200. [DOI] [PubMed] [Google Scholar]
  10. Gilbert S. P., Moyer M. L., Johnson K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry. 1998 Jan 20;37(3):792–799. doi: 10.1021/bi971117b. [DOI] [PubMed] [Google Scholar]
  11. Gulick A. M., Song H., Endow S. A., Rayment I. X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution. Biochemistry. 1998 Feb 17;37(7):1769–1776. doi: 10.1021/bi972504o. [DOI] [PubMed] [Google Scholar]
  12. Hackney D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865–6869. doi: 10.1073/pnas.91.15.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hackney D. D. Kinesin ATPase: rate-limiting ADP release. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6314–6318. doi: 10.1073/pnas.85.17.6314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henningsen U., Schliwa M. Reversal in the direction of movement of a molecular motor. Nature. 1997 Sep 4;389(6646):93–96. doi: 10.1038/38022. [DOI] [PubMed] [Google Scholar]
  15. Hirose K., Cross R. A., Amos L. A. Nucleotide-dependent structural changes in dimeric NCD molecules complexed to microtubules. J Mol Biol. 1998 May 1;278(2):389–400. doi: 10.1006/jmbi.1998.1709. [DOI] [PubMed] [Google Scholar]
  16. Hirose K., Lockhart A., Cross R. A., Amos L. A. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature. 1995 Jul 20;376(6537):277–279. doi: 10.1038/376277a0. [DOI] [PubMed] [Google Scholar]
  17. Hirose K., Lockhart A., Cross R. A., Amos L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9539–9544. doi: 10.1073/pnas.93.18.9539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirose K., Löwe J., Alonso M., Cross R. A., Amos L. A. Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. Mol Biol Cell. 1999 Jun;10(6):2063–2074. doi: 10.1091/mbc.10.6.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoenger A., Sack S., Thormählen M., Marx A., Müller J., Gross H., Mandelkow E. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J Cell Biol. 1998 Apr 20;141(2):419–430. doi: 10.1083/jcb.141.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howard J., Hudspeth A. J., Vale R. D. Movement of microtubules by single kinesin molecules. Nature. 1989 Nov 9;342(6246):154–158. doi: 10.1038/342154a0. [DOI] [PubMed] [Google Scholar]
  21. Hua W., Young E. C., Fleming M. L., Gelles J. Coupling of kinesin steps to ATP hydrolysis. Nature. 1997 Jul 24;388(6640):390–393. doi: 10.1038/41118. [DOI] [PubMed] [Google Scholar]
  22. Inoue Y., Toyoshima Y. Y., Iwane A. H., Morimoto S., Higuchi H., Yanagida T. Movements of truncated kinesin fragments with a short or an artificial flexible neck. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7275–7280. doi: 10.1073/pnas.94.14.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kojima H., Muto E., Higuchi H., Yanagida T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J. 1997 Oct;73(4):2012–2022. doi: 10.1016/S0006-3495(97)78231-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kozielski F., Arnal I., Wade R. H. A model of the microtubule-kinesin complex based on electron cryomicroscopy and X-ray crystallography. Curr Biol. 1998 Feb 12;8(4):191–198. doi: 10.1016/s0960-9822(98)70083-1. [DOI] [PubMed] [Google Scholar]
  25. Kozielski F., Sack S., Marx A., Thormählen M., Schönbrunn E., Biou V., Thompson A., Mandelkow E. M., Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell. 1997 Dec 26;91(7):985–994. doi: 10.1016/s0092-8674(00)80489-4. [DOI] [PubMed] [Google Scholar]
  26. Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lockhart A., Crevel I. M., Cross R. A. Kinesin and ncd bind through a single head to microtubules and compete for a shared MT binding site. J Mol Biol. 1995 Jun 16;249(4):763–771. doi: 10.1006/jmbi.1995.0335. [DOI] [PubMed] [Google Scholar]
  28. Lockhart A., Cross R. A. Kinetics and motility of the Eg5 microtubule motor. Biochemistry. 1996 Feb 20;35(7):2365–2373. doi: 10.1021/bi952318n. [DOI] [PubMed] [Google Scholar]
  29. Lockhart A., Cross R. A. Origins of reversed directionality in the ncd molecular motor. EMBO J. 1994 Feb 15;13(4):751–757. doi: 10.1002/j.1460-2075.1994.tb06317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ma Y. Z., Taylor E. W. Interacting head mechanism of microtubule-kinesin ATPase. J Biol Chem. 1997 Jan 10;272(2):724–730. doi: 10.1074/jbc.272.2.724. [DOI] [PubMed] [Google Scholar]
  31. Mazumdar M., Cross R. A. Engineering a lever into the kinesin neck. J Biol Chem. 1998 Nov 6;273(45):29352–29359. doi: 10.1074/jbc.273.45.29352. [DOI] [PubMed] [Google Scholar]
  32. Naber N., Cooke R., Pate E. Binding of ncd to microtubules induces a conformational change near the junction of the motor domain with the neck. Biochemistry. 1997 Aug 12;36(32):9681–9689. doi: 10.1021/bi9706881. [DOI] [PubMed] [Google Scholar]
  33. Peskin C. S., Oster G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys J. 1995 Apr;68(4 Suppl):202S–211S. [PMC free article] [PubMed] [Google Scholar]
  34. Romberg L., Pierce D. W., Vale R. D. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol. 1998 Mar 23;140(6):1407–1416. doi: 10.1083/jcb.140.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rosenfeld S. S., Rener B., Correia J. J., Mayo M. S., Cheung H. C. Equilibrium studies of kinesin-nucleotide intermediates. J Biol Chem. 1996 Apr 19;271(16):9473–9482. doi: 10.1074/jbc.271.16.9473. [DOI] [PubMed] [Google Scholar]
  36. Sablin E. P., Case R. B., Dai S. C., Hart C. L., Ruby A., Vale R. D., Fletterick R. J. Direction determination in the minus-end-directed kinesin motor ncd. Nature. 1998 Oct 22;395(6704):813–816. doi: 10.1038/27463. [DOI] [PubMed] [Google Scholar]
  37. Sablin E. P., Kull F. J., Cooke R., Vale R. D., Fletterick R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature. 1996 Apr 11;380(6574):555–559. doi: 10.1038/380555a0. [DOI] [PubMed] [Google Scholar]
  38. Sack S., Müller J., Marx A., Thormählen M., Mandelkow E. M., Brady S. T., Mandelkow E. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry. 1997 Dec 23;36(51):16155–16165. doi: 10.1021/bi9722498. [DOI] [PubMed] [Google Scholar]
  39. Schnitzer M. J., Block S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997 Jul 24;388(6640):386–390. doi: 10.1038/41111. [DOI] [PubMed] [Google Scholar]
  40. Song H., Endow S. A. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature. 1998 Dec 10;396(6711):587–590. doi: 10.1038/25153. [DOI] [PubMed] [Google Scholar]
  41. Sosa H., Dias D. P., Hoenger A., Whittaker M., Wilson-Kubalek E., Sablin E., Fletterick R. J., Vale R. D., Milligan R. A. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell. 1997 Jul 25;90(2):217–224. doi: 10.1016/s0092-8674(00)80330-x. [DOI] [PubMed] [Google Scholar]
  42. Stewart R. J., Semerjian J., Schmidt C. F. Highly processive motility is not a general feature of the kinesins. Eur Biophys J. 1998;27(4):353–360. doi: 10.1007/s002490050142. [DOI] [PubMed] [Google Scholar]
  43. Svoboda K., Block S. M. Force and velocity measured for single kinesin molecules. Cell. 1994 Jun 3;77(5):773–784. doi: 10.1016/0092-8674(94)90060-4. [DOI] [PubMed] [Google Scholar]
  44. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
  45. Thormählen M., Marx A., Müller S. A., Song Y., Mandelkow E. M., Aebi U., Mandelkow E. Interaction of monomeric and dimeric kinesin with microtubules. J Mol Biol. 1998 Feb 6;275(5):795–809. doi: 10.1006/jmbi.1997.1503. [DOI] [PubMed] [Google Scholar]
  46. Vale R. D., Fletterick R. J. The design plan of kinesin motors. Annu Rev Cell Dev Biol. 1997;13:745–777. doi: 10.1146/annurev.cellbio.13.1.745. [DOI] [PubMed] [Google Scholar]
  47. Woehlke G., Ruby A. K., Hart C. L., Ly B., Hom-Booher N., Vale R. D. Microtubule interaction site of the kinesin motor. Cell. 1997 Jul 25;90(2):207–216. doi: 10.1016/s0092-8674(00)80329-3. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES