Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Apr 29;355(1396):503–509. doi: 10.1098/rstb.2000.0591

Theories of rotary motors.

R M Berry 1
PMCID: PMC1692759  PMID: 10836503

Abstract

The bacterial flagellar motor and the ATP-hydrolysing F1 portion of the F1Fo-ATPase are known to be rotary motors, and it seems highly probable that the H+-translocating Fo portion rotates too. The energy source in the case of Fo and the flagellar motor is the flow of ions, either H+ (protons) or Na+, down an electrochemical gradient across a membrane. The fact that ions flow in a particular direction through a well-defined structure in these motors invites the possibility of a type of mechanism based on geometric constraints between the rotor position and the paths of ions flowing through the motor. The two best-studied examples of such a mechanism are the 'turnstile' model of Khan and Berg and the 'proton turbine' model of Läuger or Berry. Models such as these are typically represented by a small number of kinetic states and certain allowed transitions between them. This allows the calculation of predictions of motor behaviour and establishes a dialogue between models and experimental results. In the near future structural data and observations of single-molecule events should help to determine the nature of the mechanism of rotary motors, while motor models must be developed that can adequately explain the measured relationships between torque and speed in the flagellar motor.

Full Text

The Full Text of this article is available as a PDF (144.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai Y., Kawagishi I., Sockett R. E., Homma M. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. J Bacteriol. 1999 Oct;181(20):6332–6338. doi: 10.1128/jb.181.20.6332-6338.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg H. C., Turner L. Torque generated by the flagellar motor of Escherichia coli. Biophys J. 1993 Nov;65(5):2201–2216. doi: 10.1016/S0006-3495(93)81278-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry R. M., Armitage J. P. The bacterial flagella motor. Adv Microb Physiol. 1999;41:291–337. doi: 10.1016/s0065-2911(08)60169-1. [DOI] [PubMed] [Google Scholar]
  4. Berry R. M., Berg H. C. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys J. 1999 Jan;76(1 Pt 1):580–587. doi: 10.1016/S0006-3495(99)77226-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry R. M. Torque and switching in the bacterial flagellar motor. An electrostatic model. Biophys J. 1993 Apr;64(4):961–973. doi: 10.1016/S0006-3495(93)81462-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blair D. F. The bacterial flagellar motor. Semin Cell Biol. 1990 Apr;1(2):75–85. [PubMed] [Google Scholar]
  7. Coulton J. W., Murray R. G. Cell envelope associations of Aquaspirillum serpens flagella. J Bacteriol. 1978 Dec;136(3):1037–1049. doi: 10.1128/jb.136.3.1037-1049.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dimroth P., Wang H., Grabe M., Oster G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4924–4929. doi: 10.1073/pnas.96.9.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elston T. C., Oster G. Protein turbines. I: The bacterial flagellar motor. Biophys J. 1997 Aug;73(2):703–721. doi: 10.1016/S0006-3495(97)78104-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elston T., Wang H., Oster G. Energy transduction in ATP synthase. Nature. 1998 Jan 29;391(6666):510–513. doi: 10.1038/35185. [DOI] [PubMed] [Google Scholar]
  11. Engelbrecht S., Junge W. ATP synthase: a tentative structural model. FEBS Lett. 1997 Sep 15;414(3):485–491. doi: 10.1016/s0014-5793(97)00997-6. [DOI] [PubMed] [Google Scholar]
  12. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  13. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  14. Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
  15. Khan S., Berg H. C. Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell. 1983 Mar;32(3):913–919. doi: 10.1016/0092-8674(83)90076-4. [DOI] [PubMed] [Google Scholar]
  16. Lloyd S. A., Blair D. F. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol. 1997 Mar 7;266(4):733–744. doi: 10.1006/jmbi.1996.0836. [DOI] [PubMed] [Google Scholar]
  17. Magariyama Y., Sugiyama S., Muramoto K., Maekawa Y., Kawagishi I., Imae Y., Kudo S. Very fast flagellar rotation. Nature. 1994 Oct 27;371(6500):752–752. doi: 10.1038/371752b0. [DOI] [PubMed] [Google Scholar]
  18. Meister M., Caplan S. R., Berg H. C. Dynamics of a tightly coupled mechanism for flagellar rotation. Bacterial motility, chemiosmotic coupling, protonmotive force. Biophys J. 1989 May;55(5):905–914. doi: 10.1016/S0006-3495(89)82889-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
  20. Oosawa F., Hayashi S. The loose coupling mechanism in molecular machines of living cells. Adv Biophys. 1986;22:151–183. doi: 10.1016/0065-227x(86)90005-5. [DOI] [PubMed] [Google Scholar]
  21. Ryu W. S., Berry R. M., Berg H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature. 2000 Jan 27;403(6768):444–447. doi: 10.1038/35000233. [DOI] [PubMed] [Google Scholar]
  22. Wang H., Oster G. Energy transduction in the F1 motor of ATP synthase. Nature. 1998 Nov 19;396(6708):279–282. doi: 10.1038/24409. [DOI] [PubMed] [Google Scholar]
  23. Zhou J., Blair D. F. Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol. 1997 Oct 24;273(2):428–439. doi: 10.1006/jmbi.1997.1316. [DOI] [PubMed] [Google Scholar]
  24. Zhou J., Lloyd S. A., Blair D. F. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436–6441. doi: 10.1073/pnas.95.11.6436. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES