Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 May 29;355(1397):551–564. doi: 10.1098/rstb.2000.0597

Questions about the behaviour of bacterial pathogens in vivo.

H Smith 1
PMCID: PMC1692770  PMID: 10874729

Abstract

Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle nutrient deficiencies and antagonistic conditions that may arise? Conventional and new methods can answer the first question and part of the second; examples are described. The difficulties of trying to answer the last two are discussed. Turning to production in vivo of determinants of mucosal colonization, penetration, interference with host defence and damage to the host, here are the crucial questions. Are putative determinants, which have been recognized by studies in vitro, produced in vivo and are they relevant to virulence? Can hitherto unknown virulence determinants be recognized by examining bacteria grown in vivo? Does the complement of virulence determinants change as infection proceeds? Are regulatory processes recognized in vitro, such as ToxR/ToxS, PhoP/PhoQ, quorum sensing and type III secretion, operative in vivo? What environmental factors affect virulence determinant production in vivo and by what metabolic processes? Examples indicate that the answers to the first four questions are 'yes' in most but not all cases. Attempts to answer the last, and most difficult, question are also described. Finally, sialylation of the lipopolysaccharide of gonococci in vivo by host-derived cytidine 5'-mono-phospho-N-acetyl neuraminic acid, and the effect of host lactate are described. This investigation revealed a new bacterial component important in pathogenicity, the host factors responsible for its production and the metabolism involved.

Full Text

The Full Text of this article is available as a PDF (243.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON J. D., SMITH H. THE METABOLISM OF ERYTHRITOL BY BRUCELLA ABORTUS. J Gen Microbiol. 1965 Jan;38:109–124. doi: 10.1099/00221287-38-1-109. [DOI] [PubMed] [Google Scholar]
  2. Abu Kwaik Y., Pederson L. L. The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages. Mol Microbiol. 1996 Aug;21(3):543–556. doi: 10.1111/j.1365-2958.1996.tb02563.x. [DOI] [PubMed] [Google Scholar]
  3. Ahmed Z. U., Sarker M. R., Sack D. A. Protection of adult rabbits and monkeys from lethal shigellosis by oral immunization with a thymine-requiring and temperature-sensitive mutant of Shigella flexneri Y. Vaccine. 1990 Apr;8(2):153–158. doi: 10.1016/0264-410x(90)90139-d. [DOI] [PubMed] [Google Scholar]
  4. Akins D. R., Porcella S. F., Popova T. G., Shevchenko D., Baker S. I., Li M., Norgard M. V., Radolf J. D. Evidence for in vivo but not in vitro expression of a Borrelia burgdorferi outer surface protein F (OspF) homologue. Mol Microbiol. 1995 Nov;18(3):507–520. doi: 10.1111/j.1365-2958.1995.mmi_18030507.x. [DOI] [PubMed] [Google Scholar]
  5. Anderson J. E., Sparling P. F., Cornelissen C. N. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol. 1994 Jun;176(11):3162–3170. doi: 10.1128/jb.176.11.3162-3170.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arricau N., Hermant D., Waxin H., Ecobichon C., Duffey P. S., Popoff M. Y. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol. 1998 Aug;29(3):835–850. doi: 10.1046/j.1365-2958.1998.00976.x. [DOI] [PubMed] [Google Scholar]
  7. BRAUDE A. I., SIEMIENSKI J. Role of bacterial urease in experimental pyelonephritis. J Bacteriol. 1960 Aug;80:171–179. doi: 10.1128/jb.80.2.171-179.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bajaj V., Lucas R. L., Hwang C., Lee C. A. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol. 1996 Nov;22(4):703–714. doi: 10.1046/j.1365-2958.1996.d01-1718.x. [DOI] [PubMed] [Google Scholar]
  9. Bjerknes R., Guttormsen H. K., Solberg C. O., Wetzler L. M. Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst. Infect Immun. 1995 Jan;63(1):160–167. doi: 10.1128/iai.63.1.160-167.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bramley J., Demarco de Hormaeche R., Constantinidou C., Nassif X., Parsons N., Jones P., Smith H., Cole J. A serum-sensitive, sialyltransferase-deficient mutant of Neisseria gonorrhoeae defective in conversion to serum resistance by CMP-NANA or blood cell extracts. Microb Pathog. 1995 Mar;18(3):187–195. doi: 10.1016/s0882-4010(95)90040-3. [DOI] [PubMed] [Google Scholar]
  11. Britigan B. E., Klapper D., Svendsen T., Cohen M. S. Phagocyte-derived lactate stimulates oxygen consumption by Neisseria gonorrhoeae. An unrecognized aspect of the oxygen metabolism of phagocytosis. J Clin Invest. 1988 Feb;81(2):318–324. doi: 10.1172/JCI113323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brown M. R., Williams P. The influence of environment on envelope properties affecting survival of bacteria in infections. Annu Rev Microbiol. 1985;39:527–556. doi: 10.1146/annurev.mi.39.100185.002523. [DOI] [PubMed] [Google Scholar]
  13. Bullen J. J. The significance of iron in infection. Rev Infect Dis. 1981 Nov-Dec;3(6):1127–1138. doi: 10.1093/clinids/3.6.1127. [DOI] [PubMed] [Google Scholar]
  14. Burns-Keliher L. L., Portteus A., Curtiss R., 3rd Specific detection of Salmonella typhimurium proteins synthesized intracellularly. J Bacteriol. 1997 Jun;179(11):3604–3612. doi: 10.1128/jb.179.11.3604-3612.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Camilli A., Beattie D. T., Mekalanos J. J. Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2634–2638. doi: 10.1073/pnas.91.7.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Camilli A., Mekalanos J. J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol. 1995 Nov;18(4):671–683. doi: 10.1111/j.1365-2958.1995.mmi_18040671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chen L. M., Kaniga K., Galán J. E. Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol. 1996 Sep;21(5):1101–1115. doi: 10.1046/j.1365-2958.1996.471410.x. [DOI] [PubMed] [Google Scholar]
  18. Chiang S. L., Mekalanos J. J. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol. 1998 Feb;27(4):797–805. doi: 10.1046/j.1365-2958.1998.00726.x. [DOI] [PubMed] [Google Scholar]
  19. Clark M. A., Reed K. A., Lodge J., Stephen J., Hirst B. H., Jepson M. A. Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion of cultured cells. Infect Immun. 1996 Oct;64(10):4363–4368. doi: 10.1128/iai.64.10.4363-4368.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Coates A. R., Henderson B. Chaperonins in health and disease. Ann N Y Acad Sci. 1998 Jun 30;851:48–53. doi: 10.1111/j.1749-6632.1998.tb08975.x. [DOI] [PubMed] [Google Scholar]
  21. Cohen M. S., Cannon J. G., Jerse A. E., Charniga L. M., Isbey S. F., Whicker L. G. Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development. J Infect Dis. 1994 Mar;169(3):532–537. doi: 10.1093/infdis/169.3.532. [DOI] [PubMed] [Google Scholar]
  22. Collins D. M. In search of tuberculosis virulence genes. Trends Microbiol. 1996 Nov;4(11):426–430. doi: 10.1016/0966-842x(96)10066-4. [DOI] [PubMed] [Google Scholar]
  23. Conner C. P., Heithoff D. M., Mahan M. J. In vivo gene expression: contributions to infection, virulence, and pathogenesis. Curr Top Microbiol Immunol. 1998;225:1–12. doi: 10.1007/978-3-642-80451-9_1. [DOI] [PubMed] [Google Scholar]
  24. Contag C. H., Contag P. R., Mullins J. I., Spilman S. D., Stevenson D. K., Benaron D. A. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 1995 Nov;18(4):593–603. doi: 10.1111/j.1365-2958.1995.mmi_18040593.x. [DOI] [PubMed] [Google Scholar]
  25. Cornelis G. R., Boland A., Boyd A. P., Geuijen C., Iriarte M., Neyt C., Sory M. P., Stainier I. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev. 1998 Dec;62(4):1315–1352. doi: 10.1128/mmbr.62.4.1315-1352.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Cornelis G. R. The Yersinia deadly kiss. J Bacteriol. 1998 Nov;180(21):5495–5504. doi: 10.1128/jb.180.21.5495-5504.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cornelissen C. N., Biswas G. D., Tsai J., Paruchuri D. K., Thompson S. A., Sparling P. F. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol. 1992 Sep;174(18):5788–5797. doi: 10.1128/jb.174.18.5788-5797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Cornelissen C. N., Kelley M., Hobbs M. M., Anderson J. E., Cannon J. G., Cohen M. S., Sparling P. F. The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol Microbiol. 1998 Feb;27(3):611–616. doi: 10.1046/j.1365-2958.1998.00710.x. [DOI] [PubMed] [Google Scholar]
  29. Coulter S. N., Schwan W. R., Ng E. Y., Langhorne M. H., Ritchie H. D., Westbrock-Wadman S., Hufnagle W. O., Folger K. R., Bayer A. S., Stover C. K. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol. 1998 Oct;30(2):393–404. doi: 10.1046/j.1365-2958.1998.01075.x. [DOI] [PubMed] [Google Scholar]
  30. Crooke H., Griffiss J. M., John C. M., Lissenden S., Bramley J., Regan T., Smith H., Cole J. Characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae strain F62: instability of transposon Tn1545 delta3 in gonococci and evidence that multiple genetic loci are essential for lipooligosaccharide sialylation. Microb Pathog. 1998 Nov;25(5):237–252. doi: 10.1006/mpat.1998.0232. [DOI] [PubMed] [Google Scholar]
  31. Culham D. E., Dalgado C., Gyles C. L., Mamelak D., MacLellan S., Wood J. M. Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology. 1998 Jan;144(Pt 1):91–102. doi: 10.1099/00221287-144-1-91. [DOI] [PubMed] [Google Scholar]
  32. Dehio C., Gray-Owen S. D., Meyer T. F. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 1998 Dec;6(12):489–495. doi: 10.1016/s0966-842x(98)01365-1. [DOI] [PubMed] [Google Scholar]
  33. Estabrook M. M., Griffiss J. M., Jarvis G. A. Sialylation of Neisseria meningitidis lipooligosaccharide inhibits serum bactericidal activity by masking lacto-N-neotetraose. Infect Immun. 1997 Nov;65(11):4436–4444. doi: 10.1128/iai.65.11.4436-4444.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S274–S276. doi: 10.1093/cid/10.supplement_2.s274. [DOI] [PubMed] [Google Scholar]
  35. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189–5193. doi: 10.1073/pnas.83.14.5189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Finkel S. E., Kolter R. Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4023–4027. doi: 10.1073/pnas.96.7.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Finlay B. B., Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997 Jun;61(2):136–169. doi: 10.1128/mmbr.61.2.136-169.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Galán J. E. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol. 1996 Apr;20(2):263–271. doi: 10.1111/j.1365-2958.1996.tb02615.x. [DOI] [PubMed] [Google Scholar]
  39. Gao L., Parsons N. J., Curry A., Cole J. A., Smith H. Lactate causes changes in gonococci including increased lipopolysaccharide synthesis during short-term incubation in media containing glucose. FEMS Microbiol Lett. 1998 Dec 15;169(2):309–316. doi: 10.1111/j.1574-6968.1998.tb13334.x. [DOI] [PubMed] [Google Scholar]
  40. Garcia Véscovi E., Soncini F. C., Groisman E. A. The role of the PhoP/PhoQ regulon in Salmonella virulence. Res Microbiol. 1994 Jun-Aug;145(5-6):473–480. doi: 10.1016/0923-2508(94)90096-5. [DOI] [PubMed] [Google Scholar]
  41. Garcia-del Portillo F., Foster J. W., Maguire M. E., Finlay B. B. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol. 1992 Nov;6(22):3289–3297. doi: 10.1111/j.1365-2958.1992.tb02197.x. [DOI] [PubMed] [Google Scholar]
  42. García Véscovi E., Soncini F. C., Groisman E. A. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell. 1996 Jan 12;84(1):165–174. doi: 10.1016/s0092-8674(00)81003-x. [DOI] [PubMed] [Google Scholar]
  43. Gill M. J., McQuillen D. P., van Putten J. P., Wetzler L. M., Bramley J., Crooke H., Parsons N. J., Cole J. A., Smith H. Functional characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae. Infect Immun. 1996 Aug;64(8):3374–3378. doi: 10.1128/iai.64.8.3374-3378.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Gillaspy A. F., Hickmon S. G., Skinner R. A., Thomas J. R., Nelson C. L., Smeltzer M. S. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995 Sep;63(9):3373–3380. doi: 10.1128/iai.63.9.3373-3380.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gotschlich E. C., Seiff M. E., Blake M. S., Koomey M. Porin protein of Neisseria gonorrhoeae: cloning and gene structure. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8135–8139. doi: 10.1073/pnas.84.22.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Gulig P. A., Doyle T. J. The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. Infect Immun. 1993 Feb;61(2):504–511. doi: 10.1128/iai.61.2.504-511.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Guo L., Lim K. B., Gunn J. S., Bainbridge B., Darveau R. P., Hackett M., Miller S. I. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science. 1997 Apr 11;276(5310):250–253. doi: 10.1126/science.276.5310.250. [DOI] [PubMed] [Google Scholar]
  48. Hallé F., Meyer J. M. Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2. Eur J Biochem. 1992 Oct 15;209(2):621–627. doi: 10.1111/j.1432-1033.1992.tb17328.x. [DOI] [PubMed] [Google Scholar]
  49. Heithoff D. M., Conner C. P., Hanna P. C., Julio S. M., Hentschel U., Mahan M. J. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):934–939. doi: 10.1073/pnas.94.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Heithoff D. M., Conner C. P., Hentschel U., Govantes F., Hanna P. C., Mahan M. J. Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol. 1999 Feb;181(3):799–807. doi: 10.1128/jb.181.3.799-807.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995 Jul 21;269(5222):400–403. doi: 10.1126/science.7618105. [DOI] [PubMed] [Google Scholar]
  52. Hensel M., Shea J. E., Waterman S. R., Mundy R., Nikolaus T., Banks G., Vazquez-Torres A., Gleeson C., Fang F. C., Holden D. W. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol. 1998 Oct;30(1):163–174. doi: 10.1046/j.1365-2958.1998.01047.x. [DOI] [PubMed] [Google Scholar]
  53. Herbert S., Worlitzsch D., Dassy B., Boutonnier A., Fournier J. M., Bellon G., Dalhoff A., Döring G. Regulation of Staphylococcus aureus capsular polysaccharide type 5: CO2 inhibition in vitro and in vivo. J Infect Dis. 1997 Aug;176(2):431–438. doi: 10.1086/514061. [DOI] [PubMed] [Google Scholar]
  54. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med. 1988 Oct 1;168(4):1487–1492. doi: 10.1084/jem.168.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hormaeche C. E. The in vivo division and death rates of Salmonella typhimurium in the spleens of naturally resistant and susceptible mice measured by the superinfecting phage technique of Meynell. Immunology. 1980 Dec;41(4):973–979. [PMC free article] [PubMed] [Google Scholar]
  56. Hueck C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998 Jun;62(2):379–433. doi: 10.1128/mmbr.62.2.379-433.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Huynen M. A., Dandekar T., Bork P. Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol. 1999 Jul;7(7):281–291. doi: 10.1016/s0966-842x(99)01539-5. [DOI] [PubMed] [Google Scholar]
  58. Jepson M. A., Clark M. A. Studying M cells and their role in infection. Trends Microbiol. 1998 Sep;6(9):359–365. doi: 10.1016/s0966-842x(98)01337-7. [DOI] [PubMed] [Google Scholar]
  59. Jerse A. E., Cohen M. S., Drown P. M., Whicker L. G., Isbey S. F., Seifert H. S., Cannon J. G. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J Exp Med. 1994 Mar 1;179(3):911–920. doi: 10.1084/jem.179.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Jones B. D., Ghori N., Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med. 1994 Jul 1;180(1):15–23. doi: 10.1084/jem.180.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. KEPPIE J., WILLIAMS A. E., WITT K., SMITH H. THE ROLE OF ERYTHRITOL IN THE TISSUE LOCALIZATION OF THE BRUCELLAE. Br J Exp Pathol. 1965 Feb;46:104–108. [PMC free article] [PubMed] [Google Scholar]
  62. Kahler C. M., Martin L. E., Shih G. C., Rahman M. M., Carlson R. W., Stephens D. S. The (alpha2-->8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect Immun. 1998 Dec;66(12):5939–5947. doi: 10.1128/iai.66.12.5939-5947.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
  64. Kärnell A., Cam P. D., Verma N., Lindberg A. A. AroD deletion attenuates Shigella flexneri strain 2457T and makes it a safe and efficacious oral vaccine in monkeys. Vaccine. 1993;11(8):830–836. doi: 10.1016/0264-410x(93)90358-5. [DOI] [PubMed] [Google Scholar]
  65. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol. 1996 Sep;21(6):1137–1146. doi: 10.1046/j.1365-2958.1996.00063.x. [DOI] [PubMed] [Google Scholar]
  66. Leclerc G. J., Tartera C., Metcalf E. S. Environmental regulation of Salmonella typhi invasion-defective mutants. Infect Immun. 1998 Feb;66(2):682–691. doi: 10.1128/iai.66.2.682-691.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Leung K. Y., Finlay B. B. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11470–11474. doi: 10.1073/pnas.88.24.11470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Levine M. M., Herrington D., Murphy J. R., Morris J. G., Losonsky G., Tall B., Lindberg A. A., Svenson S., Baqar S., Edwards M. F. Safety, infectivity, immunogenicity, and in vivo stability of two attenuated auxotrophic mutant strains of Salmonella typhi, 541Ty and 543Ty, as live oral vaccines in humans. J Clin Invest. 1987 Mar;79(3):888–902. doi: 10.1172/JCI112899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M., Horton H. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996 Dec;14(13):1675–1680. doi: 10.1038/nbt1296-1675. [DOI] [PubMed] [Google Scholar]
  70. Lowe A. M., Beattie D. T., Deresiewicz R. L. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol. 1998 Mar;27(5):967–976. doi: 10.1046/j.1365-2958.1998.00741.x. [DOI] [PubMed] [Google Scholar]
  71. MacLaren D. M. The significance of urease in proteus pyelonephritis: a bacteriological study. J Pathol Bacteriol. 1968 Jul;96(1):45–56. doi: 10.1002/path.1700960106. [DOI] [PubMed] [Google Scholar]
  72. Mahan M. J., Slauch J. M., Hanna P. C., Camilli A., Tobias J. W., Waldor M. K., Mekalanos J. J. Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis. 1993 Aug;2(4):263–268. [PubMed] [Google Scholar]
  73. Mahan M. J., Slauch J. M., Mekalanos J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science. 1993 Jan 29;259(5095):686–688. doi: 10.1126/science.8430319. [DOI] [PubMed] [Google Scholar]
  74. Mahan M. J., Tobias J. W., Slauch J. M., Hanna P. C., Collier R. J., Mekalanos J. J. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):669–673. doi: 10.1073/pnas.92.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Mantle M., Rombough C. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect Immun. 1993 Oct;61(10):4131–4138. doi: 10.1128/iai.61.10.4131-4138.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Maw J., Meynell G. G. The true division and death rates of Salmonella typhimurium in the mouse spleen determined with superinfecting phage P22. Br J Exp Pathol. 1968 Dec;49(6):597–613. [PMC free article] [PubMed] [Google Scholar]
  77. McCormick B. A., Stocker B. A., Laux D. C., Cohen P. S. Roles of motility, chemotaxis, and penetration through and growth in intestinal mucus in the ability of an avirulent strain of Salmonella typhimurium to colonize the large intestine of streptomycin-treated mice. Infect Immun. 1988 Sep;56(9):2209–2217. doi: 10.1128/iai.56.9.2209-2217.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. McNeil G., Virji M. Phenotypic variants of meningococci and their potential in phagocytic interactions: the influence of opacity proteins, pili, PilC and surface sialic acids. Microb Pathog. 1997 May;22(5):295–304. doi: 10.1006/mpat.1996.0126. [DOI] [PubMed] [Google Scholar]
  79. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol. 1997 Oct;26(2):399–407. doi: 10.1046/j.1365-2958.1997.5911966.x. [DOI] [PubMed] [Google Scholar]
  80. Mikulskis A. V., Delor I., Thi V. H., Cornelis G. R. Regulation of the Yersinia enterocolitica enterotoxin Yst gene. Influence of growth phase, temperature, osmolarity, pH and bacterial host factors. Mol Microbiol. 1994 Dec;14(5):905–915. doi: 10.1111/j.1365-2958.1994.tb01326.x. [DOI] [PubMed] [Google Scholar]
  81. Miller S. I., Kukral A. M., Mekalanos J. J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054–5058. doi: 10.1073/pnas.86.13.5054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Morris Hooke A., Sordelli D. O., Cerquetti M. C., Vogt A. J. Quantitative determination of bacterial replication in vivo. Infect Immun. 1985 Aug;49(2):424–427. doi: 10.1128/iai.49.2.424-427.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Naumann M., Hanski C., Riecken E. O. Expression in vivo of additional plasmid-mediated proteins during intestinal infection with Yersinia enterocolitica serotype O8. J Med Microbiol. 1991 Nov;35(5):257–263. doi: 10.1099/00222615-35-5-257. [DOI] [PubMed] [Google Scholar]
  84. O'Callaghan D., Maskell D., Liew F. Y., Easmon C. S., Dougan G. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun. 1988 Feb;56(2):419–423. doi: 10.1128/iai.56.2.419-423.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Parsons N. J., Boons G. J., Ashton P. R., Redfern P. D., Quirk P., Gao Y., Constantinidou C., Patel J., Bramley J., Cole J. A. Lactic acid is the factor in blood cell extracts which enhances the ability of CMP-NANA to sialylate gonococcal lipopolysaccharide and induce serum resistance. Microb Pathog. 1996 Feb;20(2):87–100. doi: 10.1006/mpat.1996.0008. [DOI] [PubMed] [Google Scholar]
  86. Parsons N. J., Emond J. P., Goldner M., Bramley J., Crooke H., Cole J. A., Smith H. Lactate enhancement of sialylation of gonococcal lipopolysaccharide and of induction of serum resistance by CMP-NANA is not due to direct activation of the sialyltransferase: metabolic events are involved. Microb Pathog. 1996 Sep;21(3):193–204. doi: 10.1006/mpat.1996.0054. [DOI] [PubMed] [Google Scholar]
  87. Pascopella L., Collins F. M., Martin J. M., Lee M. H., Hatfull G. F., Stover C. K., Bloom B. R., Jacobs W. R., Jr Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun. 1994 Apr;62(4):1313–1319. doi: 10.1128/iai.62.4.1313-1319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Pepe J. C., Badger J. L., Miller V. L. Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Mol Microbiol. 1994 Jan;11(1):123–135. doi: 10.1111/j.1365-2958.1994.tb00295.x. [DOI] [PubMed] [Google Scholar]
  89. Perin F., Laurence D., Savary I., Bernard S., Le Pape A. Radioactive technetium-99m labelling of Salmonella abortusovis for the assessment of bacterial dissemination in sheep by in vivo imaging. Vet Microbiol. 1997 Sep;57(2-3):171–180. doi: 10.1016/s0378-1135(97)00126-0. [DOI] [PubMed] [Google Scholar]
  90. Pesci E. C., Iglewski B. H. The chain of command in Pseudomonas quorum sensing. Trends Microbiol. 1997 Apr;5(4):132–135. doi: 10.1016/S0966-842X(97)01008-1. [DOI] [PubMed] [Google Scholar]
  91. Pettersson J., Nordfelth R., Dubinina E., Bergman T., Gustafsson M., Magnusson K. E., Wolf-Watz H. Modulation of virulence factor expression by pathogen target cell contact. Science. 1996 Aug 30;273(5279):1231–1233. doi: 10.1126/science.273.5279.1231. [DOI] [PubMed] [Google Scholar]
  92. Plum G., Clark-Curtiss J. E. Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun. 1994 Feb;62(2):476–483. doi: 10.1128/iai.62.2.476-483.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Pollack C., Straley S. C., Klempner M. S. Probing the phagolysosomal environment of human macrophages with a Ca2+-responsive operon fusion in Yersinia pestis. 1986 Aug 28-Sep 3Nature. 322(6082):834–836. doi: 10.1038/322834a0. [DOI] [PubMed] [Google Scholar]
  94. Preston M. J., Seed P. C., Toder D. S., Iglewski B. H., Ohman D. E., Gustin J. K., Goldberg J. B., Pier G. B. Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun. 1997 Aug;65(8):3086–3090. doi: 10.1128/iai.65.8.3086-3090.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Ramsay G. DNA chips: state-of-the art. Nat Biotechnol. 1998 Jan;16(1):40–44. doi: 10.1038/nbt0198-40. [DOI] [PubMed] [Google Scholar]
  96. Regan T., Watts A., Smith H., Cole J. Regulation of the lipopolysaccharide-specific sialyltransferase activity of gonococci by the growth state of the bacteria, but not by carbon source, catabolite repression or oxygen supply. Antonie Van Leeuwenhoek. 1999 May;75(4):369–379. doi: 10.1023/a:1002019420453. [DOI] [PubMed] [Google Scholar]
  97. Richter-Dahlfors A., Buchan A. M., Finlay B. B. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med. 1997 Aug 18;186(4):569–580. doi: 10.1084/jem.186.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Russo T. A., Jodush S. T., Brown J. J., Johnson J. R. Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol. 1996 Oct;22(2):217–229. doi: 10.1046/j.1365-2958.1996.00096.x. [DOI] [PubMed] [Google Scholar]
  99. SMITH H., ANDERSON J. D., KEPPIE J., KENT P. W., TIMMIS G. M. THE INHIBITION OF THE GROWTH OF BRUCELLAS IN VITRO AND IN VIVO BY ANALOGUES OF ERYTHRITOL. J Gen Microbiol. 1965 Jan;38:101–108. doi: 10.1099/00221287-38-1-101. [DOI] [PubMed] [Google Scholar]
  100. SMITH H., WILLIAMS A. E., PEARCE J. H., KEPPIE J., HARRIS-SMITH P. W., FITZ-GEORGE R. B., WITT K. Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature. 1962 Jan 6;193:47–49. doi: 10.1038/193047a0. [DOI] [PubMed] [Google Scholar]
  101. Sansonetti P. J., Tran Van Nhieu G., Egile C. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin Infect Dis. 1999 Mar;28(3):466–475. doi: 10.1086/515150. [DOI] [PubMed] [Google Scholar]
  102. Schneider H., Cross A. S., Kuschner R. A., Taylor D. N., Sadoff J. C., Boslego J. W., Deal C. D. Experimental human gonococcal urethritis: 250 Neisseria gonorrhoeae MS11mkC are infective. J Infect Dis. 1995 Jul;172(1):180–185. doi: 10.1093/infdis/172.1.180. [DOI] [PubMed] [Google Scholar]
  103. Schneider H., Griffiss J. M., Boslego J. W., Hitchcock P. J., Zahos K. M., Apicella M. A. Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med. 1991 Dec 1;174(6):1601–1605. doi: 10.1084/jem.174.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Schneider H., Schmidt K. A., Skillman D. R., Van De Verg L., Warren R. L., Wylie H. J., Sadoff J. C., Deal C. D., Cross A. S. Sialylation lessens the infectivity of Neisseria gonorrhoeae MS11mkC. J Infect Dis. 1996 Jun;173(6):1422–1427. doi: 10.1093/infdis/173.6.1422. [DOI] [PubMed] [Google Scholar]
  105. Schwan W. R., Coulter S. N., Ng E. Y., Langhorne M. H., Ritchie H. D., Brody L. L., Westbrock-Wadman S., Bayer A. S., Folger K. R., Stover C. K. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect Immun. 1998 Feb;66(2):567–572. doi: 10.1128/iai.66.2.567-572.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Shea J. E., Hensel M., Gleeson C., Holden D. W. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2593–2597. doi: 10.1073/pnas.93.6.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Skorupski K., Taylor R. K. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol. 1997 Sep;25(6):1003–1009. doi: 10.1046/j.1365-2958.1997.5481909.x. [DOI] [PubMed] [Google Scholar]
  108. Smith H., Parsons N. J., Cole J. A. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog. 1995 Dec;19(6):365–377. doi: 10.1006/mpat.1995.0071. [DOI] [PubMed] [Google Scholar]
  109. Smith H. Pathogenicity and the microbe in vivo. The 1989 Fred Griffith Review Lecture. J Gen Microbiol. 1990 Mar;136(3):377–393. doi: 10.1099/00221287-136-3-377. [DOI] [PubMed] [Google Scholar]
  110. Smith H. The revival of interest in mechanisms of bacterial pathogenicity. Biol Rev Camb Philos Soc. 1995 May;70(2):277–316. doi: 10.1111/j.1469-185x.1995.tb01068.x. [DOI] [PubMed] [Google Scholar]
  111. Sordelli D. O., Cerquetti M. C., Hooke A. M. Replication rate of Pseudomonas aeruginosa in the murine lung. Infect Immun. 1985 Nov;50(2):388–391. doi: 10.1128/iai.50.2.388-391.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Spencer A. J., Osborne M. P., Haddon S. J., Collins J., Starkey W. G., Candy D. C., Stephen J. X-ray microanalysis of rotavirus-infected mouse intestine: a new concept of diarrhoeal secretion. J Pediatr Gastroenterol Nutr. 1990 May;10(4):516–529. doi: 10.1097/00005176-199005000-00016. [DOI] [PubMed] [Google Scholar]
  113. Storey D. G., Ujack E. E., Rabin H. R., Mitchell I. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun. 1998 Jun;66(6):2521–2528. doi: 10.1128/iai.66.6.2521-2528.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Strauss E. J., Falkow S. Microbial pathogenesis: genomics and beyond. Science. 1997 May 2;276(5313):707–712. doi: 10.1126/science.276.5313.707. [DOI] [PubMed] [Google Scholar]
  115. Sud I. J., Feingold D. S. Phospholipids and fatty acids of Neisseria gonorrhoeae. J Bacteriol. 1975 Nov;124(2):713–717. doi: 10.1128/jb.124.2.713-717.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Suk K., Das S., Sun W., Jwang B., Barthold S. W., Flavell R. A., Fikrig E. Borrelia burgdorferi genes selectively expressed in the infected host. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4269–4273. doi: 10.1073/pnas.92.10.4269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Tang C., Holden D. Pathogen virulence genes--implications for vaccines and drug therapy. Br Med Bull. 1999;55(2):387–400. doi: 10.1258/0007142991902448. [DOI] [PubMed] [Google Scholar]
  118. Tang H. B., DiMango E., Bryan R., Gambello M., Iglewski B. H., Goldberg J. B., Prince A. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun. 1996 Jan;64(1):37–43. doi: 10.1128/iai.64.1.37-43.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Valdivia R. H., Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol. 1996 Oct;22(2):367–378. doi: 10.1046/j.1365-2958.1996.00120.x. [DOI] [PubMed] [Google Scholar]
  120. Valdivia R. H., Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 1997 Sep 26;277(5334):2007–2011. doi: 10.1126/science.277.5334.2007. [DOI] [PubMed] [Google Scholar]
  121. Valdivia R. H., Falkow S. Probing bacterial gene expression within host cells. Trends Microbiol. 1997 Sep;5(9):360–363. doi: 10.1016/S0966-842X(97)01111-6. [DOI] [PubMed] [Google Scholar]
  122. Virji M., Makepeace K., Ferguson D. J., Achtman M., Moxon E. R. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol. 1993 Nov;10(3):499–510. doi: 10.1111/j.1365-2958.1993.tb00922.x. [DOI] [PubMed] [Google Scholar]
  123. Vogel U., Claus H., Heinze G., Frosch M. Functional characterization of an isogenic meningococcal alpha-2,3-sialyltransferase mutant: the role of lipooligosaccharide sialylation for serum resistance in serogroup B meningococci. Med Microbiol Immunol. 1997 Oct;186(2-3):159–166. doi: 10.1007/s004300050059. [DOI] [PubMed] [Google Scholar]
  124. Vogel U., Frosch M. Mechanisms of neisserial serum resistance. Mol Microbiol. 1999 Jun;32(6):1133–1139. doi: 10.1046/j.1365-2958.1999.01469.x. [DOI] [PubMed] [Google Scholar]
  125. WILLIAMS A. E., KEPPIE J., SMITH H. THE RELATION OF ERYTHRITOL USAGE TO VIRULENCE IN THE BRUCELLAS. J Gen Microbiol. 1964 Nov;37:285–292. doi: 10.1099/00221287-37-2-285. [DOI] [PubMed] [Google Scholar]
  126. Wachtel M. R., Miller V. L. In vitro and in vivo characterization of an ail mutant of Yersinia enterocolitica. Infect Immun. 1995 Jul;63(7):2541–2548. doi: 10.1128/iai.63.7.2541-2548.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Wallich R., Brenner C., Kramer M. D., Simon M. M. Molecular cloning and immunological characterization of a novel linear-plasmid-encoded gene, pG, of Borrelia burgdorferi expressed only in vivo. Infect Immun. 1995 Sep;63(9):3327–3335. doi: 10.1128/iai.63.9.3327-3335.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Wang J., Lory S., Ramphal R., Jin S. Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol Microbiol. 1996 Dec;22(5):1005–1012. doi: 10.1046/j.1365-2958.1996.01533.x. [DOI] [PubMed] [Google Scholar]
  129. Winson M. K., Camara M., Latifi A., Foglino M., Chhabra S. R., Daykin M., Bally M., Chapon V., Salmond G. P., Bycroft B. W. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9427–9431. doi: 10.1073/pnas.92.20.9427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Young G. M., Miller V. L. Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol. 1997 Jul;25(2):319–328. doi: 10.1046/j.1365-2958.1997.4661829.x. [DOI] [PubMed] [Google Scholar]
  131. de Saizieu A., Certa U., Warrington J., Gray C., Keck W., Mous J. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nat Biotechnol. 1998 Jan;16(1):45–48. doi: 10.1038/nbt0198-45. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES