Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 May 29;355(1397):601–611. doi: 10.1098/rstb.2000.0601

Measurement of bacterial gene expression in vivo.

I Hautefort 1, J C Hinton 1
PMCID: PMC1692778  PMID: 10874733

Abstract

The complexities of bacterial gene expression during mammalian infection cannot be addressed by in vitro experiments. We know that the infected host represents a complex and dynamic environment, which is modified during the infection process, presenting a variety of stimuli to which the pathogen must respond if it is to be successful. This response involves hundreds of ivi (in vivo-induced) genes which have recently been identified in animal and cell culture models using a variety of technologies including in vivo expression technology, differential fluorescence induction, subtractive hybridization and differential display. Proteomic analysis is beginning to be used to identify IVI proteins, and has benefited from the availability of genome sequences for increasing numbers of bacterial pathogens. The patterns of bacterial gene expression during infection remain to be investigated. Are ivi genes expressed in an organ-specific or cell-type-specific fashion? New approaches are required to answer these questions. The uses of the immunologically based in vivo antigen technology system, in situ PCR and DNA microarray analysis are considered. This review considers existing methods for examining bacterial gene expression in vivo, and describes emerging approaches that should further our understanding in the future.

Full Text

The Full Text of this article is available as a PDF (332.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abshire K. Z., Neidhardt F. C. Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage. J Bacteriol. 1993 Jun;175(12):3734–3743. doi: 10.1128/jb.175.12.3734-3743.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abu Kwaik Y., Pederson L. L. The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages. Mol Microbiol. 1996 Aug;21(3):543–556. doi: 10.1111/j.1365-2958.1996.tb02563.x. [DOI] [PubMed] [Google Scholar]
  3. Amann R., Kühl M. In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol. 1998 Jun;1(3):352–358. doi: 10.1016/s1369-5274(98)80041-6. [DOI] [PubMed] [Google Scholar]
  4. Atkins D., Izant J. G. Expression and analysis of the green fluorescent protein gene in the fission yeast Schizosaccharomyces pombe. Curr Genet. 1995 Nov;28(6):585–588. doi: 10.1007/BF00518173. [DOI] [PubMed] [Google Scholar]
  5. Barker L. P., Brooks D. M., Small P. L. The identification of Mycobacterium marinum genes differentially expressed in macrophage phagosomes using promoter fusions to green fluorescent protein. Mol Microbiol. 1998 Sep;29(5):1167–1177. doi: 10.1046/j.1365-2958.1998.00996.x. [DOI] [PubMed] [Google Scholar]
  6. Biran I., Klimentiy L., Hengge-Aronis R., Ron E. Z., Rishpon J. On-line monitoring of gene expression. Microbiology. 1999 Aug;145(Pt 8):2129–2133. doi: 10.1099/13500872-145-8-2129. [DOI] [PubMed] [Google Scholar]
  7. Blankenhorn D., Phillips J., Slonczewski J. L. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol. 1999 Apr;181(7):2209–2216. doi: 10.1128/jb.181.7.2209-2216.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buchmeier N. A., Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science. 1990 May 11;248(4956):730–732. doi: 10.1126/science.1970672. [DOI] [PubMed] [Google Scholar]
  9. Burns-Keliher L. L., Portteus A., Curtiss R., 3rd Specific detection of Salmonella typhimurium proteins synthesized intracellularly. J Bacteriol. 1997 Jun;179(11):3604–3612. doi: 10.1128/jb.179.11.3604-3612.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burns-Keliher L., Nickerson C. A., Morrow B. J., Curtiss R., 3rd Cell-specific proteins synthesized by Salmonella typhimurium. Infect Immun. 1998 Feb;66(2):856–861. doi: 10.1128/iai.66.2.856-861.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Camilli A., Beattie D. T., Mekalanos J. J. Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2634–2638. doi: 10.1073/pnas.91.7.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Camilli A., Mekalanos J. J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol. 1995 Nov;18(4):671–683. doi: 10.1111/j.1365-2958.1995.mmi_18040671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Camilli A. Noninvasive techniques for studying pathogenic bacteria in the whole animal. Trends Microbiol. 1996 Aug;4(8):295–296. doi: 10.1016/0966-842x(96)30022-x. [DOI] [PubMed] [Google Scholar]
  14. Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  16. Chen J. C., Weiss D. S., Ghigo J. M., Beckwith J. Septal localization of FtsQ, an essential cell division protein in Escherichia coli. J Bacteriol. 1999 Jan;181(2):521–530. doi: 10.1128/jb.181.2.521-530.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chiang S. L., Mekalanos J. J., Holden D. W. In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol. 1999;53:129–154. doi: 10.1146/annurev.micro.53.1.129. [DOI] [PubMed] [Google Scholar]
  18. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P. O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998 Oct 23;282(5389):699–705. doi: 10.1126/science.282.5389.699. [DOI] [PubMed] [Google Scholar]
  19. Cinelli A. R. Flexible method to obtain high sensitivity, low-cost CCD cameras for video microscopy. J Neurosci Methods. 1998 Nov 1;85(1):33–43. doi: 10.1016/s0165-0270(98)00112-5. [DOI] [PubMed] [Google Scholar]
  20. Cirillo D. M., Valdivia R. H., Monack D. M., Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol. 1998 Oct;30(1):175–188. doi: 10.1046/j.1365-2958.1998.01048.x. [DOI] [PubMed] [Google Scholar]
  21. Cirillo D. M., Valdivia R. H., Monack D. M., Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol. 1998 Oct;30(1):175–188. doi: 10.1046/j.1365-2958.1998.01048.x. [DOI] [PubMed] [Google Scholar]
  22. Contag C. H., Contag P. R., Mullins J. I., Spilman S. D., Stevenson D. K., Benaron D. A. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 1995 Nov;18(4):593–603. doi: 10.1111/j.1365-2958.1995.mmi_18040593.x. [DOI] [PubMed] [Google Scholar]
  23. Cormack B. P., Valdivia R. H., Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173(1 Spec No):33–38. doi: 10.1016/0378-1119(95)00685-0. [DOI] [PubMed] [Google Scholar]
  24. Cotter P. A., Miller J. F. In vivo and ex vivo regulation of bacterial virulence gene expression. Curr Opin Microbiol. 1998 Feb;1(1):17–26. doi: 10.1016/s1369-5274(98)80138-0. [DOI] [PubMed] [Google Scholar]
  25. Coulter S. N., Schwan W. R., Ng E. Y., Langhorne M. H., Ritchie H. D., Westbrock-Wadman S., Hufnagle W. O., Folger K. R., Bayer A. S., Stover C. K. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol. 1998 Oct;30(2):393–404. doi: 10.1046/j.1365-2958.1998.01075.x. [DOI] [PubMed] [Google Scholar]
  26. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996 Mar;14(3):315–319. doi: 10.1038/nbt0396-315. [DOI] [PubMed] [Google Scholar]
  27. Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A., Tsien R. Y. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci. 1995 Nov;20(11):448–455. doi: 10.1016/s0968-0004(00)89099-4. [DOI] [PubMed] [Google Scholar]
  28. Dejana E. Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest. 1997 Dec 1;100(11 Suppl):S7–10. [PubMed] [Google Scholar]
  29. Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science. 1990 Apr 6;248(4951):73–76. doi: 10.1126/science.2321027. [DOI] [PubMed] [Google Scholar]
  30. Dhandayuthapani S., Via L. E., Thomas C. A., Horowitz P. M., Deretic D., Deretic V. Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol Microbiol. 1995 Sep;17(5):901–912. doi: 10.1111/j.1365-2958.1995.mmi_17050901.x. [DOI] [PubMed] [Google Scholar]
  31. Eberwine J., Yeh H., Miyashiro K., Cao Y., Nair S., Finnell R., Zettel M., Coleman P. Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3010–3014. doi: 10.1073/pnas.89.7.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Emmerth M., Goebel W., Miller S. I., Hueck C. J. Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol. 1999 Sep;181(18):5652–5661. doi: 10.1128/jb.181.18.5652-5661.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Entwistle A. A comparison between the use of a high-resolution CCD camera and 35 mm film for obtaining coloured micrographs. J Microsc. 1998 Nov;192(Pt 2):81–89. doi: 10.1046/j.1365-2818.1998.00363.x. [DOI] [PubMed] [Google Scholar]
  34. Falkow S. Perspectives series: host/pathogen interactions. Invasion and intracellular sorting of bacteria: searching for bacterial genes expressed during host/pathogen interactions. J Clin Invest. 1997 Jul 15;100(2):239–243. doi: 10.1172/JCI119527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Felgner P. L., Liang X. Debugging expression screening. Nat Biotechnol. 1999 Apr;17(4):329–330. doi: 10.1038/7880. [DOI] [PubMed] [Google Scholar]
  36. Fierer J., Eckmann L., Fang F., Pfeifer C., Finlay B. B., Guiney D. Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells. Infect Immun. 1993 Dec;61(12):5231–5236. doi: 10.1128/iai.61.12.5231-5236.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Forsberg A. J., Pavitt G. D., Higgins C. F. Use of transcriptional fusions to monitor gene expression: a cautionary tale. J Bacteriol. 1994 Apr;176(7):2128–2132. doi: 10.1128/jb.176.7.2128-2132.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Forsberg A., Rosqvist R. In vivo expression of virulence genes of Yersinia pseudotuberculosis. Infect Agents Dis. 1993 Aug;2(4):275–278. [PubMed] [Google Scholar]
  39. Foster J. W. When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol. 1999 Apr;2(2):170–174. doi: 10.1016/S1369-5274(99)80030-7. [DOI] [PubMed] [Google Scholar]
  40. Francis K. P., Gallagher M. P. Light emission from a Mudlux transcriptional fusion in Salmonella typhimurium is stimulated by hydrogen peroxide and by interaction with the mouse macrophage cell line J774.2. Infect Immun. 1993 Feb;61(2):640–649. doi: 10.1128/iai.61.2.640-649.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Free A., Dorman C. J. Coupling of Escherichia coli hns mRNA levels to DNA synthesis by autoregulation: implications for growth phase control. Mol Microbiol. 1995 Oct;18(1):101–113. doi: 10.1111/j.1365-2958.1995.mmi_18010101.x. [DOI] [PubMed] [Google Scholar]
  42. Fung D. C., Theriot J. A. Imaging techniques in microbiology. Curr Opin Microbiol. 1998 Jun;1(3):346–351. doi: 10.1016/s1369-5274(98)80040-4. [DOI] [PubMed] [Google Scholar]
  43. Galán J. E. 'Avirulence genes' in animal pathogens? Trends Microbiol. 1998 Jan;6(1):3–6. doi: 10.1016/S0966-842X(97)01183-9. [DOI] [PubMed] [Google Scholar]
  44. Garcia-del Portillo F., Foster J. W., Maguire M. E., Finlay B. B. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol. 1992 Nov;6(22):3289–3297. doi: 10.1111/j.1365-2958.1992.tb02197.x. [DOI] [PubMed] [Google Scholar]
  45. Glaser P., Sharpe M. E., Raether B., Perego M., Ohlsen K., Errington J. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 1997 May 1;11(9):1160–1168. doi: 10.1101/gad.11.9.1160. [DOI] [PubMed] [Google Scholar]
  46. González-Flecha B., Demple B. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J Bacteriol. 1994 Apr;176(8):2293–2299. doi: 10.1128/jb.176.8.2293-2299.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Handfield M., Levesque R. C. Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiol Rev. 1999 Jan;23(1):69–91. doi: 10.1111/j.1574-6976.1999.tb00392.x. [DOI] [PubMed] [Google Scholar]
  48. Handfield M., Schweizer H. P., Mahan M. J., Sanschagrin F., Hoang T., Levesque R. C. ASD-GFP vectors for in vivo expression technology in Pseudomonas aeruginosa and other gram-negative bacteria. Biotechniques. 1998 Feb;24(2):261–264. doi: 10.2144/98242st02. [DOI] [PubMed] [Google Scholar]
  49. Heim R., Prasher D. C., Tsien R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501–12504. doi: 10.1073/pnas.91.26.12501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Heim R., Tsien R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996 Feb 1;6(2):178–182. doi: 10.1016/s0960-9822(02)00450-5. [DOI] [PubMed] [Google Scholar]
  51. Heithoff D. M., Conner C. P., Hanna P. C., Julio S. M., Hentschel U., Mahan M. J. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):934–939. doi: 10.1073/pnas.94.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995 Jul 21;269(5222):400–403. doi: 10.1126/science.7618105. [DOI] [PubMed] [Google Scholar]
  53. Hensel M. Whole genome scan for habitat-specific genes by signature-tagged mutagenesis. Electrophoresis. 1998 Apr;19(4):608–612. doi: 10.1002/elps.1150190425. [DOI] [PubMed] [Google Scholar]
  54. Hinnebusch B. J., Bendich A. J. The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia. J Bacteriol. 1997 Apr;179(7):2228–2237. doi: 10.1128/jb.179.7.2228-2237.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hinton J. C. The Escherichia coli genome sequence: the end of an era or the start of the FUN? Mol Microbiol. 1997 Nov;26(3):417–422. doi: 10.1046/j.1365-2958.1997.6371988.x. [DOI] [PubMed] [Google Scholar]
  56. Hodson R. E., Dustman W. A., Garg R. P., Moran M. A. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl Environ Microbiol. 1995 Nov;61(11):4074–4082. doi: 10.1128/aem.61.11.4074-4082.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Humphery-Smith I., Cordwell S. J., Blackstock W. P. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis. 1997 Aug;18(8):1217–1242. doi: 10.1002/elps.1150180804. [DOI] [PubMed] [Google Scholar]
  58. Hølmstrom K., Tolker-Nielsen T., Molin S. Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription-PCR. J Bacteriol. 1999 Mar;181(6):1733–1738. doi: 10.1128/jb.181.6.1733-1738.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  60. Jacobi C. A., Roggenkamp A., Rakin A., Zumbihl R., Leitritz L., Heesemann J. In vitro and in vivo expression studies of yopE from Yersinia enterocolitica using the gfp reporter gene. Mol Microbiol. 1998 Nov;30(4):865–882. doi: 10.1046/j.1365-2958.1998.01128.x. [DOI] [PubMed] [Google Scholar]
  61. Kirchner G., Roberts J. L., Gustafson G. D., Ingolia T. D. Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells. Gene. 1989 Sep 30;81(2):349–354. doi: 10.1016/0378-1119(89)90195-9. [DOI] [PubMed] [Google Scholar]
  62. Kozian D. H., Kirschbaum B. J. Comparative gene-expression analysis. Trends Biotechnol. 1999 Feb;17(2):73–78. doi: 10.1016/s0167-7799(98)01292-x. [DOI] [PubMed] [Google Scholar]
  63. Kremer L., Baulard A., Estaquier J., Poulain-Godefroy O., Locht C. Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol. 1995 Sep;17(5):913–922. doi: 10.1111/j.1365-2958.1995.mmi_17050913.x. [DOI] [PubMed] [Google Scholar]
  64. Lewis P. J., Nwoguh C. E., Barer M. R., Harwood C. R., Errington J. Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell- and compartment-specific gene expression in Salmonella enteritidis and Bacillus subtilis. Mol Microbiol. 1994 Aug;13(4):655–662. doi: 10.1111/j.1365-2958.1994.tb00459.x. [DOI] [PubMed] [Google Scholar]
  65. Mahan M. J., Slauch J. M., Mekalanos J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science. 1993 Jan 29;259(5095):686–688. doi: 10.1126/science.8430319. [DOI] [PubMed] [Google Scholar]
  66. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol. 1997 Oct;26(2):399–407. doi: 10.1046/j.1365-2958.1997.5911966.x. [DOI] [PubMed] [Google Scholar]
  68. Meighen E. A. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991 Mar;55(1):123–142. doi: 10.1128/mr.55.1.123-142.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Mekalanos J. J. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol. 1992 Jan;174(1):1–7. doi: 10.1128/jb.174.1.1-7.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Morschhäuser J., Michel S., Hacker J. Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Gen Genet. 1998 Feb;257(4):412–420. doi: 10.1007/s004380050665. [DOI] [PubMed] [Google Scholar]
  71. Nwoguh C. E., Harwood C. R., Barer M. R. Detection of induced beta-galactosidase activity in individual non-culturable cells of pathogenic bacteria by quantitative cytological assay. Mol Microbiol. 1995 Aug;17(3):545–554. doi: 10.1111/j.1365-2958.1995.mmi_17030545.x. [DOI] [PubMed] [Google Scholar]
  72. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  73. Parker A. E., Bermudez L. E. Expression of the green fluorescent protein (GFP) in mycobacterium avium as a tool to study the interaction between Mycobacteria and host cells. Microb Pathog. 1997 Apr;22(4):193–198. doi: 10.1006/mpat.1996.0106. [DOI] [PubMed] [Google Scholar]
  74. Pettersson J., Nordfelth R., Dubinina E., Bergman T., Gustafsson M., Magnusson K. E., Wolf-Watz H. Modulation of virulence factor expression by pathogen target cell contact. Science. 1996 Aug 30;273(5279):1231–1233. doi: 10.1126/science.273.5279.1231. [DOI] [PubMed] [Google Scholar]
  75. Plum G., Clark-Curtiss J. E. Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun. 1994 Feb;62(2):476–483. doi: 10.1128/iai.62.2.476-483.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Prasher D. C., Eckenrode V. K., Ward W. W., Prendergast F. G., Cormier M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 1992 Feb 15;111(2):229–233. doi: 10.1016/0378-1119(92)90691-h. [DOI] [PubMed] [Google Scholar]
  77. Relman DA, Wright A. Molecular and cellular microbiology: new tools of the trade. Curr Opin Microbiol. 1998 Jun;1(3):337–339. doi: 10.1016/s1369-5274(98)80038-6. [DOI] [PubMed] [Google Scholar]
  78. Rhen M., Riikonen P., Taira S. Transcriptional regulation of Salmonella enterica virulence plasmid genes in cultured macrophages. Mol Microbiol. 1993 Oct;10(1):45–56. doi: 10.1111/j.1365-2958.1993.tb00902.x. [DOI] [PubMed] [Google Scholar]
  79. Richmond C. S., Glasner J. D., Mau R., Jin H., Blattner F. R. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 1999 Oct 1;27(19):3821–3835. doi: 10.1093/nar/27.19.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Richter-Dahlfors A., Buchan A. M., Finlay B. B. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med. 1997 Aug 18;186(4):569–580. doi: 10.1084/jem.186.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Sarkis G. J., Jacobs W. R., Jr, Hatfull G. F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995 Mar;15(6):1055–1067. doi: 10.1111/j.1365-2958.1995.tb02281.x. [DOI] [PubMed] [Google Scholar]
  82. Schmidt K. D., Schmidt-Rose T., Römling U., Tümmler B. Differential genome analysis of bacteria by genomic subtractive hybridization and pulsed field gel electrophoresis. Electrophoresis. 1998 Apr;19(4):509–514. doi: 10.1002/elps.1150190410. [DOI] [PubMed] [Google Scholar]
  83. Schwan W. R., Coulter S. N., Ng E. Y., Langhorne M. H., Ritchie H. D., Brody L. L., Westbrock-Wadman S., Bayer A. S., Folger K. R., Stover C. K. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect Immun. 1998 Feb;66(2):567–572. doi: 10.1128/iai.66.2.567-572.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Sharma P., Lönneborg A., Stougaard P. PCR-based construction of subtractive cDNA library using magnetic beads. Biotechniques. 1993 Oct;15(4):610–612. [PubMed] [Google Scholar]
  85. Siemering K. R., Golbik R., Sever R., Haseloff J. Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol. 1996 Dec 1;6(12):1653–1663. doi: 10.1016/s0960-9822(02)70789-6. [DOI] [PubMed] [Google Scholar]
  86. Silhavy T. J., Beckwith J. R. Uses of lac fusions for the study of biological problems. Microbiol Rev. 1985 Dec;49(4):398–418. doi: 10.1128/mr.49.4.398-418.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Slauch J. M., Mahan M. J., Mekalanos J. J. Measurement of transcriptional activity in pathogenic bacteria recovered directly from infected host tissue. Biotechniques. 1994 Apr;16(4):641–644. [PubMed] [Google Scholar]
  88. Stewart G. S., Williams P. lux genes and the applications of bacterial bioluminescence. J Gen Microbiol. 1992 Jul;138(7):1289–1300. doi: 10.1099/00221287-138-7-1289. [DOI] [PubMed] [Google Scholar]
  89. Suk K., Das S., Sun W., Jwang B., Barthold S. W., Flavell R. A., Fikrig E. Borrelia burgdorferi genes selectively expressed in the infected host. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4269–4273. doi: 10.1073/pnas.92.10.4269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Sykes K. F., Johnston S. A. Linear expression elements: a rapid, in vivo, method to screen for gene functions. Nat Biotechnol. 1999 Apr;17(4):355–359. doi: 10.1038/7908. [DOI] [PubMed] [Google Scholar]
  91. Tao H., Bausch C., Richmond C., Blattner F. R., Conway T. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol. 1999 Oct;181(20):6425–6440. doi: 10.1128/jb.181.20.6425-6440.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Tolker-Nielsen T., Holmstrøm K., Boe L., Molin S. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol Microbiol. 1998 Mar;27(6):1099–1105. doi: 10.1046/j.1365-2958.1998.00760.x. [DOI] [PubMed] [Google Scholar]
  93. Tolker-Nielsen T., Holmstrøm K., Molin S. Visualization of specific gene expression in individual Salmonella typhimurium cells by in situ PCR. Appl Environ Microbiol. 1997 Nov;63(11):4196–4203. doi: 10.1128/aem.63.11.4196-4203.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Valdivia R. H., Falkow S. Flow cytometry and bacterial pathogenesis. Curr Opin Microbiol. 1998 Jun;1(3):359–363. doi: 10.1016/s1369-5274(98)80042-8. [DOI] [PubMed] [Google Scholar]
  95. Valdivia R. H., Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 1997 Sep 26;277(5334):2007–2011. doi: 10.1126/science.277.5334.2007. [DOI] [PubMed] [Google Scholar]
  96. Valdivia R. H., Falkow S. Probing bacterial gene expression within host cells. Trends Microbiol. 1997 Sep;5(9):360–363. doi: 10.1016/S0966-842X(97)01111-6. [DOI] [PubMed] [Google Scholar]
  97. Valdivia R. H., Hromockyj A. E., Monack D., Ramakrishnan L., Falkow S. Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene. 1996;173(1 Spec No):47–52. doi: 10.1016/0378-1119(95)00706-7. [DOI] [PubMed] [Google Scholar]
  98. VanBogelen R. A., Greis K. D., Blumenthal R. M., Tani T. H., Matthews R. G. Mapping regulatory networks in microbial cells. Trends Microbiol. 1999 Aug;7(8):320–328. doi: 10.1016/s0966-842x(99)01540-1. [DOI] [PubMed] [Google Scholar]
  99. Weiss D. S., Chen J. C., Ghigo J. M., Boyd D., Beckwith J. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol. 1999 Jan;181(2):508–520. doi: 10.1128/jb.181.2.508-520.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. doi: 10.1126/science.285.5429.901. [DOI] [PubMed] [Google Scholar]
  101. Zhang J. P., Normark S. Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science. 1996 Aug 30;273(5279):1234–1236. doi: 10.1126/science.273.5279.1234. [DOI] [PubMed] [Google Scholar]
  102. Zhao H., Thompson R. B., Lockatell V., Johnson D. E., Mobley H. L. Use of green fluorescent protein to assess urease gene expression by uropathogenic Proteus mirabilis during experimental ascending urinary tract infection. Infect Immun. 1998 Jan;66(1):330–335. doi: 10.1128/iai.66.1.330-335.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. de Saizieu A., Certa U., Warrington J., Gray C., Keck W., Mous J. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nat Biotechnol. 1998 Jan;16(1):45–48. doi: 10.1038/nbt0198-45. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES