Abstract
The vertebrate heart differs from chordate ancestors both structurally and functionally. Genetic units of form, termed 'modules', are identifiable by mutation, both in zebrafish and mouse, and correspond to features recently acquired in evolution, such as the ventricular chamber or endothelial lining of the vessels and heart. Zebrafish (Danio rerio) genetic screens have provided a reasonably inclusive set of such genes. Normal cardiac function may also be disrupted by single-gene mutations in zebrafish. Individual mutations may perturb contractility or rhythm generation. The zebrafish mutations which principally disturb cardiac contractility fall into two broad phenotypic categories, 'dilated' and 'hypertrophic'. Interestingly, these correspond to the two primary types of heart failure in humans. These disorders of early cardiac function provide candidate genes to be examined in complex human heart diseases, including arrhythmias and heart failure.
Full Text
The Full Text of this article is available as a PDF (539.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arber S., Hunter J. J., Ross J., Jr, Hongo M., Sansig G., Borg J., Perriard J. C., Chien K. R., Caroni P. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997 Feb 7;88(3):393–403. doi: 10.1016/s0092-8674(00)81878-4. [DOI] [PubMed] [Google Scholar]
- Brownlie A., Donovan A., Pratt S. J., Paw B. H., Oates A. C., Brugnara C., Witkowska H. E., Sassa S., Zon L. I. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet. 1998 Nov;20(3):244–250. doi: 10.1038/3049. [DOI] [PubMed] [Google Scholar]
- Campbell K. P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995 Mar 10;80(5):675–679. doi: 10.1016/0092-8674(95)90344-5. [DOI] [PubMed] [Google Scholar]
- Chien K. R. Stress pathways and heart failure. Cell. 1999 Sep 3;98(5):555–558. doi: 10.1016/s0092-8674(00)80043-4. [DOI] [PubMed] [Google Scholar]
- Cho M. C., Rapacciuolo A., Koch W. J., Kobayashi Y., Jones L. R., Rockman H. A. Defective beta-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J Biol Chem. 1999 Aug 6;274(32):22251–22256. doi: 10.1074/jbc.274.32.22251. [DOI] [PubMed] [Google Scholar]
- Coral-Vazquez R., Cohn R. D., Moore S. A., Hill J. A., Weiss R. M., Davisson R. L., Straub V., Barresi R., Bansal D., Hrstka R. F. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell. 1999 Aug 20;98(4):465–474. doi: 10.1016/s0092-8674(00)81975-3. [DOI] [PubMed] [Google Scholar]
- Fishman M. C., Chien K. R. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997 Jun;124(11):2099–2117. doi: 10.1242/dev.124.11.2099. [DOI] [PubMed] [Google Scholar]
- Fishman M. C., Olson E. N. Parsing the heart: genetic modules for organ assembly. Cell. 1997 Oct 17;91(2):153–156. doi: 10.1016/s0092-8674(00)80397-9. [DOI] [PubMed] [Google Scholar]
- Gassmann M., Casagranda F., Orioli D., Simon H., Lai C., Klein R., Lemke G. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995 Nov 23;378(6555):390–394. doi: 10.1038/378390a0. [DOI] [PubMed] [Google Scholar]
- Hirota H., Chen J., Betz U. A., Rajewsky K., Gu Y., Ross J., Jr, Müller W., Chien K. R. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999 Apr 16;97(2):189–198. doi: 10.1016/s0092-8674(00)80729-1. [DOI] [PubMed] [Google Scholar]
- Kushwaha S. S., Fallon J. T., Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997 Jan 23;336(4):267–276. doi: 10.1056/NEJM199701233360407. [DOI] [PubMed] [Google Scholar]
- Lee K. F., Simon H., Chen H., Bates B., Hung M. C., Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995 Nov 23;378(6555):394–398. doi: 10.1038/378394a0. [DOI] [PubMed] [Google Scholar]
- Mestroni L., Rocco C., Gregori D., Sinagra G., Di Lenarda A., Miocic S., Vatta M., Pinamonti B., Muntoni F., Caforio A. L. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol. 1999 Jul;34(1):181–190. doi: 10.1016/s0735-1097(99)00172-2. [DOI] [PubMed] [Google Scholar]
- Meyer D., Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995 Nov 23;378(6555):386–390. doi: 10.1038/378386a0. [DOI] [PubMed] [Google Scholar]
- Milner D. J., Weitzer G., Tran D., Bradley A., Capetanaki Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol. 1996 Sep;134(5):1255–1270. doi: 10.1083/jcb.134.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narula J., Pandey P., Arbustini E., Haider N., Narula N., Kolodgie F. D., Dal Bello B., Semigran M. J., Bielsa-Masdeu A., Dec G. W. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8144–8149. doi: 10.1073/pnas.96.14.8144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson T. M., Michels V. V., Thibodeau S. N., Tai Y. S., Keating M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science. 1998 May 1;280(5364):750–752. doi: 10.1126/science.280.5364.750. [DOI] [PubMed] [Google Scholar]
- Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
- Seidman C. E., Seidman J. G. Molecular genetic studies of familial hypertrophic cardiomyopathy. Basic Res Cardiol. 1998;93 (Suppl 3):13–16. doi: 10.1007/s003950050196. [DOI] [PubMed] [Google Scholar]
- Stainier D. Y., Lee R. K., Fishman M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development. 1993 Sep;119(1):31–40. doi: 10.1242/dev.119.1.31. [DOI] [PubMed] [Google Scholar]
- Stainier D. Y., Weinstein B. M., Detrich H. W., 3rd, Zon L. I., Fishman M. C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development. 1995 Oct;121(10):3141–3150. doi: 10.1242/dev.121.10.3141. [DOI] [PubMed] [Google Scholar]
- Towbin J. A., Bowles K. R., Bowles N. E. Etiologies of cardiomyopathy and heart failure. Nat Med. 1999 Mar;5(3):266–267. doi: 10.1038/6474. [DOI] [PubMed] [Google Scholar]
- Towbin J. A. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998 Feb;10(1):131–139. doi: 10.1016/s0955-0674(98)80096-3. [DOI] [PubMed] [Google Scholar]
- Wang H., Long Q., Marty S. D., Sassa S., Lin S. A zebrafish model for hepatoerythropoietic porphyria. Nat Genet. 1998 Nov;20(3):239–243. doi: 10.1038/3041. [DOI] [PubMed] [Google Scholar]