Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Jul 29;355(1399):993–1002. doi: 10.1098/rstb.2000.0635

Roles of Eph receptors and ephrins in segmental patterning.

Q Xu 1, G Mellitzer 1, D G Wilkinson 1
PMCID: PMC1692797  PMID: 11128993

Abstract

Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.

Full Text

The Full Text of this article is available as a PDF (513.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. H., Wilkinson G. A., Weiss C., Diella F., Gale N. W., Deutsch U., Risau W., Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 1999 Feb 1;13(3):295–306. doi: 10.1101/gad.13.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker N., Seitanidou T., Murphy P., Mattéi M. G., Topilko P., Nieto M. A., Wilkinson D. G., Charnay P., Gilardi-Hebenstreit P. Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech Dev. 1994 Jul;47(1):3–17. doi: 10.1016/0925-4773(94)90091-4. [DOI] [PubMed] [Google Scholar]
  3. Bergemann A. D., Cheng H. J., Brambilla R., Klein R., Flanagan J. G. ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol Cell Biol. 1995 Sep;15(9):4921–4929. doi: 10.1128/mcb.15.9.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birgbauer E., Sechrist J., Bronner-Fraser M., Fraser S. Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development. 1995 Apr;121(4):935–945. doi: 10.1242/dev.121.4.935. [DOI] [PubMed] [Google Scholar]
  5. Bradley R. S., Espeseth A., Kintner C. NF-protocadherin, a novel member of the cadherin superfamily, is required for Xenopus ectodermal differentiation. Curr Biol. 1998 Mar 12;8(6):325–334. doi: 10.1016/s0960-9822(98)70132-0. [DOI] [PubMed] [Google Scholar]
  6. Bronner-Fraser M. Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol. 1986 May;115(1):44–55. doi: 10.1016/0012-1606(86)90226-5. [DOI] [PubMed] [Google Scholar]
  7. Bronner-Fraser M. Mechanisms of neural crest cell migration. Bioessays. 1993 Apr;15(4):221–230. doi: 10.1002/bies.950150402. [DOI] [PubMed] [Google Scholar]
  8. Bronner-Fraser M., Stern C. Effects of mesodermal tissues on avian neural crest cell migration. Dev Biol. 1991 Feb;143(2):213–217. doi: 10.1016/0012-1606(91)90071-a. [DOI] [PubMed] [Google Scholar]
  9. Bruzzone R., White T. W., Paul D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996 May 15;238(1):1–27. doi: 10.1111/j.1432-1033.1996.0001q.x. [DOI] [PubMed] [Google Scholar]
  10. Brückner K., Klein R. Signaling by Eph receptors and their ephrin ligands. Curr Opin Neurobiol. 1998 Jun;8(3):375–382. doi: 10.1016/s0959-4388(98)80064-0. [DOI] [PubMed] [Google Scholar]
  11. Brückner K., Pablo Labrador J., Scheiffele P., Herb A., Seeburg P. H., Klein R. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron. 1999 Mar;22(3):511–524. doi: 10.1016/s0896-6273(00)80706-0. [DOI] [PubMed] [Google Scholar]
  12. Brückner K., Pasquale E. B., Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 1997 Mar 14;275(5306):1640–1643. doi: 10.1126/science.275.5306.1640. [DOI] [PubMed] [Google Scholar]
  13. Buchert M., Schneider S., Meskenaite V., Adams M. T., Canaani E., Baechi T., Moelling K., Hovens C. M. The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J Cell Biol. 1999 Jan 25;144(2):361–371. doi: 10.1083/jcb.144.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Connor R. J., Menzel P., Pasquale E. B. Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol. 1998 Jan 1;193(1):21–35. doi: 10.1006/dbio.1997.8786. [DOI] [PubMed] [Google Scholar]
  15. Davies J. A., Cook G. M., Stern C. D., Keynes R. J. Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron. 1990 Jan;4(1):11–20. doi: 10.1016/0896-6273(90)90439-m. [DOI] [PubMed] [Google Scholar]
  16. Davis S., Gale N. W., Aldrich T. H., Maisonpierre P. C., Lhotak V., Pawson T., Goldfarb M., Yancopoulos G. D. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science. 1994 Nov 4;266(5186):816–819. doi: 10.1126/science.7973638. [DOI] [PubMed] [Google Scholar]
  17. Debby-Brafman A., Burstyn-Cohen T., Klar A., Kalcheim C. F-Spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration. Neuron. 1999 Mar;22(3):475–488. doi: 10.1016/s0896-6273(00)80703-5. [DOI] [PubMed] [Google Scholar]
  18. Dottori M., Hartley L., Galea M., Paxinos G., Polizzotto M., Kilpatrick T., Bartlett P. F., Murphy M., Köntgen F., Boyd A. W. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13248–13253. doi: 10.1073/pnas.95.22.13248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Drescher U., Bonhoeffer F., Müller B. K. The Eph family in retinal axon guidance. Curr Opin Neurobiol. 1997 Feb;7(1):75–80. doi: 10.1016/s0959-4388(97)80123-7. [DOI] [PubMed] [Google Scholar]
  20. Drescher U., Kremoser C., Handwerker C., Löschinger J., Noda M., Bonhoeffer F. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell. 1995 Aug 11;82(3):359–370. doi: 10.1016/0092-8674(95)90425-5. [DOI] [PubMed] [Google Scholar]
  21. Durbin L., Brennan C., Shiomi K., Cooke J., Barrios A., Shanmugalingam S., Guthrie B., Lindberg R., Holder N. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 1998 Oct 1;12(19):3096–3109. doi: 10.1101/gad.12.19.3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Feldheim D. A., Vanderhaeghen P., Hansen M. J., Frisén J., Lu Q., Barbacid M., Flanagan J. G. Topographic guidance labels in a sensory projection to the forebrain. Neuron. 1998 Dec;21(6):1303–1313. doi: 10.1016/s0896-6273(00)80650-9. [DOI] [PubMed] [Google Scholar]
  23. Flanagan J. G., Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu Rev Neurosci. 1998;21:309–345. doi: 10.1146/annurev.neuro.21.1.309. [DOI] [PubMed] [Google Scholar]
  24. Flenniken A. M., Gale N. W., Yancopoulos G. D., Wilkinson D. G. Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol. 1996 Nov 1;179(2):382–401. doi: 10.1006/dbio.1996.0269. [DOI] [PubMed] [Google Scholar]
  25. Fraser S., Keynes R., Lumsden A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature. 1990 Mar 29;344(6265):431–435. doi: 10.1038/344431a0. [DOI] [PubMed] [Google Scholar]
  26. Friedlander D. R., Mège R. M., Cunningham B. A., Edelman G. M. Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7043–7047. doi: 10.1073/pnas.86.18.7043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Frisén J., Yates P. A., McLaughlin T., Friedman G. C., O'Leary D. D., Barbacid M. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron. 1998 Feb;20(2):235–243. doi: 10.1016/s0896-6273(00)80452-3. [DOI] [PubMed] [Google Scholar]
  28. Gale N. W., Flenniken A., Compton D. C., Jenkins N., Copeland N. G., Gilbert D. J., Davis S., Wilkinson D. G., Yancopoulos G. D. Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments. Oncogene. 1996 Sep 19;13(6):1343–1352. [PubMed] [Google Scholar]
  29. Gale N. W., Holland S. J., Valenzuela D. M., Flenniken A., Pan L., Ryan T. E., Henkemeyer M., Strebhardt K., Hirai H., Wilkinson D. G. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron. 1996 Jul;17(1):9–19. doi: 10.1016/s0896-6273(00)80276-7. [DOI] [PubMed] [Google Scholar]
  30. Gale N. W., Yancopoulos G. D. Ephrins and their receptors: a repulsive topic? Cell Tissue Res. 1997 Nov;290(2):227–241. doi: 10.1007/s004410050927. [DOI] [PubMed] [Google Scholar]
  31. George S. E., Simokat K., Hardin J., Chisholm A. D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell. 1998 Mar 6;92(5):633–643. doi: 10.1016/s0092-8674(00)81131-9. [DOI] [PubMed] [Google Scholar]
  32. Godt D., Tepass U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature. 1998 Sep 24;395(6700):387–391. doi: 10.1038/26493. [DOI] [PubMed] [Google Scholar]
  33. Goldstein R. S., Kalcheim C. Determination of epithelial half-somites in skeletal morphogenesis. Development. 1992 Oct;116(2):441–445. doi: 10.1242/dev.116.2.441. [DOI] [PubMed] [Google Scholar]
  34. Goldstein R. S., Kalcheim C. Normal segmentation and size of the primary sympathetic ganglia depend upon the alternation of rostrocaudal properties of the somites. Development. 1991 May;112(1):327–334. doi: 10.1242/dev.112.1.327. [DOI] [PubMed] [Google Scholar]
  35. González-Reyes A., St Johnston D. The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development. 1998 Sep;125(18):3635–3644. doi: 10.1242/dev.125.18.3635. [DOI] [PubMed] [Google Scholar]
  36. Gumbiner B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996 Feb 9;84(3):345–357. doi: 10.1016/s0092-8674(00)81279-9. [DOI] [PubMed] [Google Scholar]
  37. Guthrie S., Prince V., Lumsden A. Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development. 1993 Jun;118(2):527–538. doi: 10.1242/dev.118.2.527. [DOI] [PubMed] [Google Scholar]
  38. Henkemeyer M., Marengere L. E., McGlade J., Olivier J. P., Conlon R. A., Holmyard D. P., Letwin K., Pawson T. Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene. 1994 Apr;9(4):1001–1014. [PubMed] [Google Scholar]
  39. Henkemeyer M., Orioli D., Henderson J. T., Saxton T. M., Roder J., Pawson T., Klein R. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell. 1996 Jul 12;86(1):35–46. doi: 10.1016/s0092-8674(00)80075-6. [DOI] [PubMed] [Google Scholar]
  40. Heyman I., Kent A., Lumsden A. Cellular morphology and extracellular space at rhombomere boundaries in the chick embryo hindbrain. Dev Dyn. 1993 Dec;198(4):241–253. doi: 10.1002/aja.1001980402. [DOI] [PubMed] [Google Scholar]
  41. Hock B., Böhme B., Karn T., Yamamoto T., Kaibuchi K., Holtrich U., Holland S., Pawson T., Rübsamen-Waigmann H., Strebhardt K. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9779–9784. doi: 10.1073/pnas.95.17.9779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Holland S. J., Gale N. W., Mbamalu G., Yancopoulos G. D., Henkemeyer M., Pawson T. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature. 1996 Oct 24;383(6602):722–725. doi: 10.1038/383722a0. [DOI] [PubMed] [Google Scholar]
  43. Hornberger M. R., Dütting D., Ciossek T., Yamada T., Handwerker C., Lang S., Weth F., Huf J., Wessel R., Logan C. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron. 1999 Apr;22(4):731–742. doi: 10.1016/s0896-6273(00)80732-1. [DOI] [PubMed] [Google Scholar]
  44. Hunt P., Clarke J. D., Buxton P., Ferretti P., Thorogood P. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Dev Biol. 1998 Jun 1;198(1):82–104. doi: 10.1006/dbio.1998.8886. [DOI] [PubMed] [Google Scholar]
  45. Hunt P., Gulisano M., Cook M., Sham M. H., Faiella A., Wilkinson D., Boncinelli E., Krumlauf R. A distinct Hox code for the branchial region of the vertebrate head. Nature. 1991 Oct 31;353(6347):861–864. doi: 10.1038/353861a0. [DOI] [PubMed] [Google Scholar]
  46. Huynh-Do U., Stein E., Lane A. A., Liu H., Cerretti D. P., Daniel T. O. Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J. 1999 Apr 15;18(8):2165–2173. doi: 10.1093/emboj/18.8.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Irving C., Nieto M. A., DasGupta R., Charnay P., Wilkinson D. G. Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev Biol. 1996 Jan 10;173(1):26–38. doi: 10.1006/dbio.1996.0004. [DOI] [PubMed] [Google Scholar]
  48. Jesuthasan S. Contact inhibition/collapse and pathfinding of neural crest cells in the zebrafish trunk. Development. 1996 Jan;122(1):381–389. doi: 10.1242/dev.122.1.381. [DOI] [PubMed] [Google Scholar]
  49. Jones T. L., Chong L. D., Kim J., Xu R. H., Kung H. F., Daar I. O. Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):576–581. doi: 10.1073/pnas.95.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kalcheim C., Teillet M. A. Consequences of somite manipulation on the pattern of dorsal root ganglion development. Development. 1989 May;106(1):85–93. doi: 10.1242/dev.106.1.85. [DOI] [PubMed] [Google Scholar]
  51. Keynes R. J., Stern C. D. Segmentation in the vertebrate nervous system. 1984 Aug 30-Sep 5Nature. 310(5980):786–789. doi: 10.1038/310786a0. [DOI] [PubMed] [Google Scholar]
  52. Kimmel C. B., Warga R. M., Kane D. A. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development. 1994 Feb;120(2):265–276. doi: 10.1242/dev.120.2.265. [DOI] [PubMed] [Google Scholar]
  53. Krull C. E., Collazo A., Fraser S. E., Bronner-Fraser M. Segmental migration of trunk neural crest: time-lapse analysis reveals a role for PNA-binding molecules. Development. 1995 Nov;121(11):3733–3743. doi: 10.1242/dev.121.11.3733. [DOI] [PubMed] [Google Scholar]
  54. Krull C. E., Lansford R., Gale N. W., Collazo A., Marcelle C., Yancopoulos G. D., Fraser S. E., Bronner-Fraser M. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol. 1997 Aug 1;7(8):571–580. doi: 10.1016/s0960-9822(06)00256-9. [DOI] [PubMed] [Google Scholar]
  55. Kumar N. M., Gilula N. B. The gap junction communication channel. Cell. 1996 Feb 9;84(3):381–388. doi: 10.1016/s0092-8674(00)81282-9. [DOI] [PubMed] [Google Scholar]
  56. Köntges G., Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996 Oct;122(10):3229–3242. doi: 10.1242/dev.122.10.3229. [DOI] [PubMed] [Google Scholar]
  57. Labrador J. P., Brambilla R., Klein R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 1997 Jul 1;16(13):3889–3897. doi: 10.1093/emboj/16.13.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Lackmann M., Oates A. C., Dottori M., Smith F. M., Do C., Power M., Kravets L., Boyd A. W. Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem. 1998 Aug 7;273(32):20228–20237. doi: 10.1074/jbc.273.32.20228. [DOI] [PubMed] [Google Scholar]
  59. Lin D., Gish G. D., Songyang Z., Pawson T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J Biol Chem. 1999 Feb 5;274(6):3726–3733. doi: 10.1074/jbc.274.6.3726. [DOI] [PubMed] [Google Scholar]
  60. Lumsden A., Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature. 1989 Feb 2;337(6206):424–428. doi: 10.1038/337424a0. [DOI] [PubMed] [Google Scholar]
  61. Lumsden A., Krumlauf R. Patterning the vertebrate neuraxis. Science. 1996 Nov 15;274(5290):1109–1115. doi: 10.1126/science.274.5290.1109. [DOI] [PubMed] [Google Scholar]
  62. Lumsden A., Sprawson N., Graham A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development. 1991 Dec;113(4):1281–1291. doi: 10.1242/dev.113.4.1281. [DOI] [PubMed] [Google Scholar]
  63. Martinez S., Geijo E., Sánchez-Vives M. V., Puelles L., Gallego R. Reduced junctional permeability at interrhombomeric boundaries. Development. 1992 Dec;116(4):1069–1076. doi: 10.1242/dev.116.4.1069. [DOI] [PubMed] [Google Scholar]
  64. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  65. Meima L., Kljavin I. J., Moran P., Shih A., Winslow J. W., Caras I. W. AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur J Neurosci. 1997 Jan;9(1):177–188. doi: 10.1111/j.1460-9568.1997.tb01365.x. [DOI] [PubMed] [Google Scholar]
  66. Meima L., Moran P., Matthews W., Caras I. W. Lerk2 (ephrin-B1) is a collapsing factor for a subset of cortical growth cones and acts by a mechanism different from AL-1 (ephrin-A5). Mol Cell Neurosci. 1997;9(4):314–328. doi: 10.1006/mcne.1997.0621. [DOI] [PubMed] [Google Scholar]
  67. Mellitzer G., Xu Q., Wilkinson D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature. 1999 Jul 1;400(6739):77–81. doi: 10.1038/21907. [DOI] [PubMed] [Google Scholar]
  68. Monschau B., Kremoser C., Ohta K., Tanaka H., Kaneko T., Yamada T., Handwerker C., Hornberger M. R., Löschinger J., Pasquale E. B. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J. 1997 Mar 17;16(6):1258–1267. doi: 10.1093/emboj/16.6.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Nakamoto M., Cheng H. J., Friedman G. C., McLaughlin T., Hansen M. J., Yoon C. H., O'Leary D. D., Flanagan J. G. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell. 1996 Sep 6;86(5):755–766. doi: 10.1016/s0092-8674(00)80150-6. [DOI] [PubMed] [Google Scholar]
  70. Nieto M. A., Gilardi-Hebenstreit P., Charnay P., Wilkinson D. G. A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development. 1992 Dec;116(4):1137–1150. doi: 10.1242/dev.116.4.1137. [DOI] [PubMed] [Google Scholar]
  71. Noden D. M. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol. 1983 Mar;96(1):144–165. doi: 10.1016/0012-1606(83)90318-4. [DOI] [PubMed] [Google Scholar]
  72. Nonchev S., Vesque C., Maconochie M., Seitanidou T., Ariza-McNaughton L., Frain M., Marshall H., Sham M. H., Krumlauf R., Charnay P. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development. 1996 Feb;122(2):543–554. doi: 10.1242/dev.122.2.543. [DOI] [PubMed] [Google Scholar]
  73. Nose A., Nagafuchi A., Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell. 1988 Sep 23;54(7):993–1001. doi: 10.1016/0092-8674(88)90114-6. [DOI] [PubMed] [Google Scholar]
  74. O'Leary D. D., Wilkinson D. G. Eph receptors and ephrins in neural development. Curr Opin Neurobiol. 1999 Feb;9(1):65–73. doi: 10.1016/s0959-4388(99)80008-7. [DOI] [PubMed] [Google Scholar]
  75. Orioli D., Henkemeyer M., Lemke G., Klein R., Pawson T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 1996 Nov 15;15(22):6035–6049. [PMC free article] [PubMed] [Google Scholar]
  76. Orioli D., Klein R. The Eph receptor family: axonal guidance by contact repulsion. Trends Genet. 1997 Sep;13(9):354–359. doi: 10.1016/s0168-9525(97)01220-1. [DOI] [PubMed] [Google Scholar]
  77. Pasquale E. B. Identification of chicken embryo kinase 5, a developmentally regulated receptor-type tyrosine kinase of the Eph family. Cell Regul. 1991 Jul;2(7):523–534. doi: 10.1091/mbc.2.7.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pasquale E. B. The Eph family of receptors. Curr Opin Cell Biol. 1997 Oct;9(5):608–615. doi: 10.1016/s0955-0674(97)80113-5. [DOI] [PubMed] [Google Scholar]
  79. Rickmann M., Fawcett J. W., Keynes R. J. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol. 1985 Dec;90:437–455. [PubMed] [Google Scholar]
  80. Ring C., Hassell J., Halfter W. Expression pattern of collagen IX and potential role in the segmentation of the peripheral nervous system. Dev Biol. 1996 Nov 25;180(1):41–53. doi: 10.1006/dbio.1996.0283. [DOI] [PubMed] [Google Scholar]
  81. Rosentreter S. M., Davenport R. W., Löschinger J., Huf J., Jung J., Bonhoeffer F. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J Neurobiol. 1998 Dec;37(4):541–562. [PubMed] [Google Scholar]
  82. Sadaghiani B., Thiébaud C. H. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev Biol. 1987 Nov;124(1):91–110. doi: 10.1016/0012-1606(87)90463-5. [DOI] [PubMed] [Google Scholar]
  83. Saldivar J. R., Krull C. E., Krumlauf R., Ariza-McNaughton L., Bronner-Fraser M. Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa-3 in the avian embryo. Development. 1996 Mar;122(3):895–904. doi: 10.1242/dev.122.3.895. [DOI] [PubMed] [Google Scholar]
  84. Schneider-Maunoury S., Topilko P., Seitandou T., Levi G., Cohen-Tannoudji M., Pournin S., Babinet C., Charnay P. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell. 1993 Dec 17;75(6):1199–1214. doi: 10.1016/0092-8674(93)90329-o. [DOI] [PubMed] [Google Scholar]
  85. Scully A. L., McKeown M., Thomas J. B. Isolation and characterization of Dek, a Drosophila eph receptor protein tyrosine kinase. Mol Cell Neurosci. 1999 May;13(5):337–347. doi: 10.1006/mcne.1999.0752. [DOI] [PubMed] [Google Scholar]
  86. Sechrist J., Serbedzija G. N., Scherson T., Fraser S. E., Bronner-Fraser M. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development. 1993 Jul;118(3):691–703. doi: 10.1242/dev.118.3.691. [DOI] [PubMed] [Google Scholar]
  87. Sham M. H., Vesque C., Nonchev S., Marshall H., Frain M., Gupta R. D., Whiting J., Wilkinson D., Charnay P., Krumlauf R. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell. 1993 Jan 29;72(2):183–196. doi: 10.1016/0092-8674(93)90659-e. [DOI] [PubMed] [Google Scholar]
  88. Smith A., Robinson V., Patel K., Wilkinson D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol. 1997 Aug 1;7(8):561–570. doi: 10.1016/s0960-9822(06)00255-7. [DOI] [PubMed] [Google Scholar]
  89. Sobieszczuk D. F., Wilkinson D. G. Masking of Eph receptors and ephrins. Curr Biol. 1999 Jul 1;9(13):R469–R470. doi: 10.1016/s0960-9822(99)80296-6. [DOI] [PubMed] [Google Scholar]
  90. Stein E., Lane A. A., Cerretti D. P., Schoecklmann H. O., Schroff A. D., Van Etten R. L., Daniel T. O. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 1998 Mar 1;12(5):667–678. doi: 10.1101/gad.12.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Steinberg M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool. 1970 Apr;173(4):395–433. doi: 10.1002/jez.1401730406. [DOI] [PubMed] [Google Scholar]
  92. Stern C. D., Sisodiya S. M., Keynes R. J. Interactions between neurites and somite cells: inhibition and stimulation of nerve growth in the chick embryo. J Embryol Exp Morphol. 1986 Feb;91:209–226. [PubMed] [Google Scholar]
  93. Studer M., Gavalas A., Marshall H., Ariza-McNaughton L., Rijli F. M., Chambon P., Krumlauf R. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development. 1998 Mar;125(6):1025–1036. doi: 10.1242/dev.125.6.1025. [DOI] [PubMed] [Google Scholar]
  94. Suga H., Koyanagi M., Hoshiyama D., Ono K., Iwabe N., Kuma K., Miyata T. Extensive gene duplication in the early evolution of animals before the parazoan-eumetazoan split demonstrated by G proteins and protein tyrosine kinases from sponge and hydra. J Mol Evol. 1999 Jun;48(6):646–653. doi: 10.1007/pl00006508. [DOI] [PubMed] [Google Scholar]
  95. Swiatek P. J., Gridley T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 1993 Nov;7(11):2071–2084. doi: 10.1101/gad.7.11.2071. [DOI] [PubMed] [Google Scholar]
  96. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991 Mar 22;251(5000):1451–1455. doi: 10.1126/science.2006419. [DOI] [PubMed] [Google Scholar]
  97. Taneja R., Thisse B., Rijli F. M., Thisse C., Bouillet P., Dollé P., Chambon P. The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-specific expression in mouse embryos. Dev Biol. 1996 Aug 1;177(2):397–412. doi: 10.1006/dbio.1996.0173. [DOI] [PubMed] [Google Scholar]
  98. Theil T., Frain M., Gilardi-Hebenstreit P., Flenniken A., Charnay P., Wilkinson D. G. Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development. 1998 Feb;125(3):443–452. doi: 10.1242/dev.125.3.443. [DOI] [PubMed] [Google Scholar]
  99. Torres R., Firestein B. L., Dong H., Staudinger J., Olson E. N., Huganir R. L., Bredt D. S., Gale N. W., Yancopoulos G. D. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron. 1998 Dec;21(6):1453–1463. doi: 10.1016/s0896-6273(00)80663-7. [DOI] [PubMed] [Google Scholar]
  100. Walter J., Kern-Veits B., Huf J., Stolze B., Bonhoeffer F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development. 1987 Dec;101(4):685–696. doi: 10.1242/dev.101.4.685. [DOI] [PubMed] [Google Scholar]
  101. Wang H. U., Anderson D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron. 1997 Mar;18(3):383–396. doi: 10.1016/s0896-6273(00)81240-4. [DOI] [PubMed] [Google Scholar]
  102. Wang H. U., Chen Z. F., Anderson D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998 May 29;93(5):741–753. doi: 10.1016/s0092-8674(00)81436-1. [DOI] [PubMed] [Google Scholar]
  103. Wilkinson D. G. Molecular mechanisms of segmental patterning in the vertebrate hindbrain and neural crest. Bioessays. 1993 Aug;15(8):499–505. doi: 10.1002/bies.950150802. [DOI] [PubMed] [Google Scholar]
  104. Winning R. S., Scales J. B., Sargent T. D. Disruption of cell adhesion in Xenopus embryos by Pagliaccio, an Eph-class receptor tyrosine kinase. Dev Biol. 1996 Nov 1;179(2):309–319. doi: 10.1006/dbio.1996.0262. [DOI] [PubMed] [Google Scholar]
  105. Wizenmann A., Lumsden A. Segregation of rhombomeres by differential chemoaffinity. Mol Cell Neurosci. 1997;9(5-6):448–459. doi: 10.1006/mcne.1997.0642. [DOI] [PubMed] [Google Scholar]
  106. Xu Q., Alldus G., Holder N., Wilkinson D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development. 1995 Dec;121(12):4005–4016. doi: 10.1242/dev.121.12.4005. [DOI] [PubMed] [Google Scholar]
  107. Xu Q., Mellitzer G., Robinson V., Wilkinson D. G. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature. 1999 May 20;399(6733):267–271. doi: 10.1038/20452. [DOI] [PubMed] [Google Scholar]
  108. Zhou R. Regulation of topographic projection by the Eph family receptor Bsk (EphA5) and its ligands. Cell Tissue Res. 1997 Nov;290(2):251–259. doi: 10.1007/s004410050929. [DOI] [PubMed] [Google Scholar]
  109. Zisch A. H., Stallcup W. B., Chong L. D., Dahlin-Huppe K., Voshol J., Schachner M., Pasquale E. B. Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. J Neurosci Res. 1997 Mar 15;47(6):655–665. doi: 10.1002/(sici)1097-4547(19970315)47:6<655::aid-jnr12>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES