Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Jul 29;355(1399):923–930. doi: 10.1098/rstb.2000.0627

Xwnt11 and the regulation of gastrulation in Xenopus.

J C Smith 1, F L Conlon 1, Y Saka 1, M Tada 1
PMCID: PMC1692801  PMID: 11128985

Abstract

The molecular basis of gastrulation is poorly understood. In this paper we address this problem by taking advantage of the observation that the transcription activator Brachyury is essential for gastrulation movements in Xenopus and mouse embryos. We infer from this observation that amongst the target genes of Brachyury are some that are involved in the regulation of gastrulation. In the course of a screen for Brachyury targets we identified Xwnt11. Use of a dominant-negative Xwntll construct confirms that signalling by this class of Wnts is essential for normal gastrulation movements, and further investigation suggests that Xwntll signals not through the canonical Wnt signalling pathway involving GSK-3 and beta-catenin but through another route, which may require small GTPases such as Rho and Rac. Future work will concentrate on elucidating the Xwnt11 signal transduction pathway and on investigating its influence on cell shape and polarity during Xenopus gastrulation.

Full Text

The Full Text of this article is available as a PDF (679.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias A. M., Brown A. M., Brennan K. Wnt signalling: pathway or network? Curr Opin Genet Dev. 1999 Aug;9(4):447–454. doi: 10.1016/s0959-437x(99)80068-9. [DOI] [PubMed] [Google Scholar]
  2. Axelrod J. D., Miller J. R., Shulman J. M., Moon R. T., Perrimon N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 1998 Aug 15;12(16):2610–2622. doi: 10.1101/gad.12.16.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett K., Leptin M., Settleman J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell. 1997 Dec 26;91(7):905–915. doi: 10.1016/s0092-8674(00)80482-1. [DOI] [PubMed] [Google Scholar]
  4. Basson C. T., Bachinsky D. R., Lin R. C., Levi T., Elkins J. A., Soults J., Grayzel D., Kroumpouzou E., Traill T. A., Leblanc-Straceski J. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997 Jan;15(1):30–35. doi: 10.1038/ng0197-30. [DOI] [PubMed] [Google Scholar]
  5. Boutros M., Mlodzik M. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech Dev. 1999 May;83(1-2):27–37. doi: 10.1016/s0925-4773(99)00046-5. [DOI] [PubMed] [Google Scholar]
  6. Boutros M., Paricio N., Strutt D. I., Mlodzik M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell. 1998 Jul 10;94(1):109–118. doi: 10.1016/s0092-8674(00)81226-x. [DOI] [PubMed] [Google Scholar]
  7. Cadigan K. M., Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997 Dec 15;11(24):3286–3305. doi: 10.1101/gad.11.24.3286. [DOI] [PubMed] [Google Scholar]
  8. Casey E. S., O'Reilly M. A., Conlon F. L., Smith J. C. The T-box transcription factor Brachyury regulates expression of eFGF through binding to a non-palindromic response element. Development. 1998 Oct;125(19):3887–3894. doi: 10.1242/dev.125.19.3887. [DOI] [PubMed] [Google Scholar]
  9. Conlon F. L., Sedgwick S. G., Weston K. M., Smith J. C. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development. 1996 Aug;122(8):2427–2435. doi: 10.1242/dev.122.8.2427. [DOI] [PubMed] [Google Scholar]
  10. Conlon F. L., Smith J. C. Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways. Dev Biol. 1999 Sep 1;213(1):85–100. doi: 10.1006/dbio.1999.9330. [DOI] [PubMed] [Google Scholar]
  11. Cunliffe V., Smith J. C. Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue. Nature. 1992 Jul 30;358(6385):427–430. doi: 10.1038/358427a0. [DOI] [PubMed] [Google Scholar]
  12. Cunliffe V., Smith J. C. Specification of mesodermal pattern in Xenopus laevis by interactions between Brachyury, noggin and Xwnt-8. EMBO J. 1994 Jan 15;13(2):349–359. doi: 10.1002/j.1460-2075.1994.tb06268.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Du S. J., Purcell S. M., Christian J. L., McGrew L. L., Moon R. T. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol. 1995 May;15(5):2625–2634. doi: 10.1128/mcb.15.5.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gluecksohn-Schoenheimer S. The Development of Normal and Homozygous Brachy (T/T) Mouse Embryos in the Extraembryonic Coelom of the Chick. Proc Natl Acad Sci U S A. 1944 Jun 15;30(6):134–140. doi: 10.1073/pnas.30.6.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harland R., Gerhart J. Formation and function of Spemann's organizer. Annu Rev Cell Dev Biol. 1997;13:611–667. doi: 10.1146/annurev.cellbio.13.1.611. [DOI] [PubMed] [Google Scholar]
  16. Herrmann B. G., Labeit S., Poustka A., King T. R., Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 1990 Feb 15;343(6259):617–622. doi: 10.1038/343617a0. [DOI] [PubMed] [Google Scholar]
  17. Hoppler S., Brown J. D., Moon R. T. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 1996 Nov 1;10(21):2805–2817. doi: 10.1101/gad.10.21.2805. [DOI] [PubMed] [Google Scholar]
  18. Kispert A., Herrmann B. G. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 1993 Aug;12(8):3211–3220. doi: 10.1002/j.1460-2075.1993.tb05990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kispert A., Koschorz B., Herrmann B. G. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 1995 Oct 2;14(19):4763–4772. doi: 10.1002/j.1460-2075.1995.tb00158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kispert A., Ortner H., Cooke J., Herrmann B. G. The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev Biol. 1995 Apr;168(2):406–415. doi: 10.1006/dbio.1995.1090. [DOI] [PubMed] [Google Scholar]
  21. Krasnow R. E., Adler P. N. A single frizzled protein has a dual function in tissue polarity. Development. 1994 Jul;120(7):1883–1893. doi: 10.1242/dev.120.7.1883. [DOI] [PubMed] [Google Scholar]
  22. Ku M., Melton D. A. Xwnt-11: a maternally expressed Xenopus wnt gene. Development. 1993 Dec;119(4):1161–1173. doi: 10.1242/dev.119.4.1161. [DOI] [PubMed] [Google Scholar]
  23. Logan M., Tabin C. J. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999 Mar 12;283(5408):1736–1739. doi: 10.1126/science.283.5408.1736. [DOI] [PubMed] [Google Scholar]
  24. McMahon A. P., Moon R. T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell. 1989 Sep 22;58(6):1075–1084. doi: 10.1016/0092-8674(89)90506-0. [DOI] [PubMed] [Google Scholar]
  25. Molenaar M., van de Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., Roose J., Destrée O., Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996 Aug 9;86(3):391–399. doi: 10.1016/s0092-8674(00)80112-9. [DOI] [PubMed] [Google Scholar]
  26. Moon R. T., Campbell R. M., Christian J. L., McGrew L. L., Shih J., Fraser S. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development. 1993 Sep;119(1):97–111. doi: 10.1242/dev.119.1.97. [DOI] [PubMed] [Google Scholar]
  27. Morgan R., Hooiveld M. H., In der Reiden P., Durston A. J. A conserved 30 base pair element in the Wnt-5a promoter is sufficient both to drive its' early embryonic expression and to mediate its' repression by otx2. Mech Dev. 1999 Jul;85(1-2):97–102. doi: 10.1016/s0925-4773(99)00091-x. [DOI] [PubMed] [Google Scholar]
  28. Müller C. W., Herrmann B. G. Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor. Nature. 1997 Oct 23;389(6653):884–888. doi: 10.1038/39929. [DOI] [PubMed] [Google Scholar]
  29. Noselli S., Agnès F. Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev. 1999 Aug;9(4):466–472. doi: 10.1016/S0959-437X(99)80071-9. [DOI] [PubMed] [Google Scholar]
  30. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]
  31. O'Reilly M. A., Smith J. C., Cunliffe V. Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis. Development. 1995 May;121(5):1351–1359. doi: 10.1242/dev.121.5.1351. [DOI] [PubMed] [Google Scholar]
  32. Osada S. I., Wright C. V. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development. 1999 Jun;126(14):3229–3240. doi: 10.1242/dev.126.14.3229. [DOI] [PubMed] [Google Scholar]
  33. Papaioannou V. E., Silver L. M. The T-box gene family. Bioessays. 1998 Jan;20(1):9–19. doi: 10.1002/(SICI)1521-1878(199801)20:1<9::AID-BIES4>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  34. Papaioannou V. E. T-box family reunion. Trends Genet. 1997 Jun;13(6):212–213. doi: 10.1016/S0168-9525(97)01144-X. [DOI] [PubMed] [Google Scholar]
  35. Perrimon N., Mahowald A. P. Multiple functions of segment polarity genes in Drosophila. Dev Biol. 1987 Feb;119(2):587–600. doi: 10.1016/0012-1606(87)90061-3. [DOI] [PubMed] [Google Scholar]
  36. Pflugfelder G. O., Roth H., Poeck B. A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem Biophys Res Commun. 1992 Jul 31;186(2):918–925. doi: 10.1016/0006-291x(92)90833-7. [DOI] [PubMed] [Google Scholar]
  37. Rodriguez-Esteban C., Tsukui T., Yonei S., Magallon J., Tamura K., Izpisua Belmonte J. C. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature. 1999 Apr 29;398(6730):814–818. doi: 10.1038/19769. [DOI] [PubMed] [Google Scholar]
  38. Schulte-Merker S., Ho R. K., Herrmann B. G., Nüsslein-Volhard C. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development. 1992 Dec;116(4):1021–1032. doi: 10.1242/dev.116.4.1021. [DOI] [PubMed] [Google Scholar]
  39. Schulte-Merker S., van Eeden F. J., Halpern M. E., Kimmel C. B., Nüsslein-Volhard C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 1994 Apr;120(4):1009–1015. doi: 10.1242/dev.120.4.1009. [DOI] [PubMed] [Google Scholar]
  40. Sheldahl L. C., Park M., Malbon C. C., Moon R. T. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol. 1999 Jul 1;9(13):695–698. doi: 10.1016/s0960-9822(99)80310-8. [DOI] [PubMed] [Google Scholar]
  41. Slusarski D. C., Corces V. G., Moon R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature. 1997 Nov 27;390(6658):410–413. doi: 10.1038/37138. [DOI] [PubMed] [Google Scholar]
  42. Smith J. C., Price B. M., Green J. B., Weigel D., Herrmann B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991 Oct 4;67(1):79–87. doi: 10.1016/0092-8674(91)90573-h. [DOI] [PubMed] [Google Scholar]
  43. Smith J. Brachyury and the T-box genes. Curr Opin Genet Dev. 1997 Aug;7(4):474–480. doi: 10.1016/s0959-437x(97)80073-1. [DOI] [PubMed] [Google Scholar]
  44. Smith J. T-box genes: what they do and how they do it. Trends Genet. 1999 Apr;15(4):154–158. doi: 10.1016/s0168-9525(99)01693-5. [DOI] [PubMed] [Google Scholar]
  45. Smith W. C., Harland R. M. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell. 1991 Nov 15;67(4):753–765. doi: 10.1016/0092-8674(91)90070-f. [DOI] [PubMed] [Google Scholar]
  46. Sokol S., Christian J. L., Moon R. T., Melton D. A. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell. 1991 Nov 15;67(4):741–752. doi: 10.1016/0092-8674(91)90069-b. [DOI] [PubMed] [Google Scholar]
  47. Strutt D. I., Weber U., Mlodzik M. The role of RhoA in tissue polarity and Frizzled signalling. Nature. 1997 May 15;387(6630):292–295. doi: 10.1038/387292a0. [DOI] [PubMed] [Google Scholar]
  48. Sun B. I., Bush S. M., Collins-Racie L. A., LaVallie E. R., DiBlasio-Smith E. A., Wolfman N. M., McCoy J. M., Sive H. L. derrière: a TGF-beta family member required for posterior development in Xenopus. Development. 1999 Apr;126(7):1467–1482. doi: 10.1242/dev.126.7.1467. [DOI] [PubMed] [Google Scholar]
  49. Tada M., Casey E. S., Fairclough L., Smith J. C. Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Development. 1998 Oct;125(20):3997–4006. doi: 10.1242/dev.125.20.3997. [DOI] [PubMed] [Google Scholar]
  50. Takeuchi J. K., Koshiba-Takeuchi K., Matsumoto K., Vogel-Höpker A., Naitoh-Matsuo M., Ogura K., Takahashi N., Yasuda K., Ogura T. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature. 1999 Apr 29;398(6730):810–814. doi: 10.1038/19762. [DOI] [PubMed] [Google Scholar]
  51. Wilkinson D. G., Bhatt S., Herrmann B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature. 1990 Feb 15;343(6259):657–659. doi: 10.1038/343657a0. [DOI] [PubMed] [Google Scholar]
  52. Wilson V., Manson L., Skarnes W. C., Beddington R. S. The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development. 1995 Mar;121(3):877–886. doi: 10.1242/dev.121.3.877. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES