Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Jul 29;355(1399):953–964. doi: 10.1098/rstb.2000.0631

Genes, lineages and the neural crest: a speculative review.

D J Anderson 1
PMCID: PMC1692804  PMID: 11128989

Abstract

Sensory and sympathetic neurons are generated from the trunk neural crest. The prevailing view has been that these two classes of neurons are derived from a common neural crest-derived progenitor that chooses between neuronal fates only after migrating to sites of peripheral ganglion formation. Here I reconsider this view in the light of new molecular and genetic data on the differentiation of sensory and autonomic neurons. These data raise several paradoxes when taken in the context of classical studies of the timing and spatial patterning of sensory and autonomic ganglion formation. These paradoxes can be most easily resolved by assuming that the restriction of neural crest cells to either sensory or autonomic lineages occurs at a very early stage, either before and/or shortly after they exit the neural tube.

Full Text

The Full Text of this article is available as a PDF (618.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J. The neural crest cell lineage problem: neuropoiesis? Neuron. 1989 Jul;3(1):1–12. doi: 10.1016/0896-6273(89)90110-4. [DOI] [PubMed] [Google Scholar]
  2. Artinger K. B., Bronner-Fraser M. Partial restriction in the developmental potential of late emigrating avian neural crest cells. Dev Biol. 1992 Jan;149(1):149–157. doi: 10.1016/0012-1606(92)90271-h. [DOI] [PubMed] [Google Scholar]
  3. Asamoto K., Nojyo Y., Aoyama H. Restriction of the fate of early migrating trunk neural crest in gangliogenesis of avian embryos. Int J Dev Biol. 1995 Dec;39(6):975–984. [PubMed] [Google Scholar]
  4. Baroffio A., Blot M. Statistical evidence for a random commitment of pluripotent cephalic neural crest cells. J Cell Sci. 1992 Oct;103(Pt 2):581–587. doi: 10.1242/jcs.103.2.581. [DOI] [PubMed] [Google Scholar]
  5. Bronner-Fraser M., Fraser S. E. Cell lineage analysis of the avian neural crest. Dev Suppl. 1991;Suppl 2:17–22. [PubMed] [Google Scholar]
  6. Bronner-Fraser M., Fraser S. E. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature. 1988 Sep 8;335(6186):161–164. doi: 10.1038/335161a0. [DOI] [PubMed] [Google Scholar]
  7. Bronner-Fraser M., Fraser S. Developmental potential of avian trunk neural crest cells in situ. Neuron. 1989 Dec;3(6):755–766. doi: 10.1016/0896-6273(89)90244-4. [DOI] [PubMed] [Google Scholar]
  8. Bronner-Fraser M. Segregation of cell lineage in the neural crest. Curr Opin Genet Dev. 1993 Aug;3(4):641–647. doi: 10.1016/0959-437x(93)90101-t. [DOI] [PubMed] [Google Scholar]
  9. Dickinson M. E., Selleck M. A., McMahon A. P., Bronner-Fraser M. Dorsalization of the neural tube by the non-neural ectoderm. Development. 1995 Jul;121(7):2099–2106. doi: 10.1242/dev.121.7.2099. [DOI] [PubMed] [Google Scholar]
  10. Duff R. S., Langtimm C. J., Richardson M. K., Sieber-Blum M. In vitro clonal analysis of progenitor cell patterns in dorsal root and sympathetic ganglia of the quail embryo. Dev Biol. 1991 Oct;147(2):451–459. doi: 10.1016/0012-1606(91)90303-k. [DOI] [PubMed] [Google Scholar]
  11. Erickson C. A., Goins T. L. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development. 1995 Mar;121(3):915–924. doi: 10.1242/dev.121.3.915. [DOI] [PubMed] [Google Scholar]
  12. Fode C., Gradwohl G., Morin X., Dierich A., LeMeur M., Goridis C., Guillemot F. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron. 1998 Mar;20(3):483–494. doi: 10.1016/s0896-6273(00)80989-7. [DOI] [PubMed] [Google Scholar]
  13. Frank E., Sanes J. R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development. 1991 Apr;111(4):895–908. doi: 10.1242/dev.111.4.895. [DOI] [PubMed] [Google Scholar]
  14. Fraser S. E., Bronner-Fraser M. Migrating neural crest cells in the trunk of the avian embryo are multipotent. Development. 1991 Aug;112(4):913–920. doi: 10.1242/dev.112.4.913. [DOI] [PubMed] [Google Scholar]
  15. Gradwohl G., Fode C., Guillemot F. Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev Biol. 1996 Nov 25;180(1):227–241. doi: 10.1006/dbio.1996.0297. [DOI] [PubMed] [Google Scholar]
  16. Hall P. A., Watt F. M. Stem cells: the generation and maintenance of cellular diversity. Development. 1989 Aug;106(4):619–633. doi: 10.1242/dev.106.4.619. [DOI] [PubMed] [Google Scholar]
  17. Henion P. D., Weston J. A. Timing and pattern of cell fate restrictions in the neural crest lineage. Development. 1997 Nov;124(21):4351–4359. doi: 10.1242/dev.124.21.4351. [DOI] [PubMed] [Google Scholar]
  18. Lawson S. N., Biscoe T. J. Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J Neurocytol. 1979 Jun;8(3):265–274. doi: 10.1007/BF01236122. [DOI] [PubMed] [Google Scholar]
  19. Le Douarin N. M. Cell line segregation during peripheral nervous system ontogeny. Science. 1986 Mar 28;231(4745):1515–1522. doi: 10.1126/science.3952494. [DOI] [PubMed] [Google Scholar]
  20. Le Douarin N. M. The ontogeny of the neural crest in avian embryo chimaeras. Nature. 1980 Aug 14;286(5774):663–669. doi: 10.1038/286663a0. [DOI] [PubMed] [Google Scholar]
  21. Le Lievre C. S., Schweizer G. G., Ziller C. M., Le Douarin N. M. Restrictions of developmental capabilities in neural crest cell derivatives as tested by in vivo transplantation experiments. Dev Biol. 1980 Jun 15;77(2):362–378. doi: 10.1016/0012-1606(80)90481-9. [DOI] [PubMed] [Google Scholar]
  22. Liem K. F., Jr, Tremml G., Jessell T. M. A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell. 1997 Oct 3;91(1):127–138. doi: 10.1016/s0092-8674(01)80015-5. [DOI] [PubMed] [Google Scholar]
  23. Liem K. F., Jr, Tremml G., Roelink H., Jessell T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell. 1995 Sep 22;82(6):969–979. doi: 10.1016/0092-8674(95)90276-7. [DOI] [PubMed] [Google Scholar]
  24. Lo L., Anderson D. J. Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron. 1995 Sep;15(3):527–539. doi: 10.1016/0896-6273(95)90142-6. [DOI] [PubMed] [Google Scholar]
  25. Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J. L., Anderson D. J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron. 1998 Mar;20(3):469–482. doi: 10.1016/s0896-6273(00)80988-5. [DOI] [PubMed] [Google Scholar]
  26. Ma Q., Kintner C., Anderson D. J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell. 1996 Oct 4;87(1):43–52. doi: 10.1016/s0092-8674(00)81321-5. [DOI] [PubMed] [Google Scholar]
  27. McMahon A. P., Joyner A. L., Bradley A., McMahon J. A. The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell. 1992 May 15;69(4):581–595. doi: 10.1016/0092-8674(92)90222-x. [DOI] [PubMed] [Google Scholar]
  28. Morrison S. J., Shah N. M., Anderson D. J. Regulatory mechanisms in stem cell biology. Cell. 1997 Feb 7;88(3):287–298. doi: 10.1016/s0092-8674(00)81867-x. [DOI] [PubMed] [Google Scholar]
  29. Morrison S. J., Uchida N., Weissman I. L. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:35–71. doi: 10.1146/annurev.cb.11.110195.000343. [DOI] [PubMed] [Google Scholar]
  30. Morrison S. J., White P. M., Zock C., Anderson D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999 Mar 5;96(5):737–749. doi: 10.1016/s0092-8674(00)80583-8. [DOI] [PubMed] [Google Scholar]
  31. Perez S. E., Rebelo S., Anderson D. J. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development. 1999 Apr;126(8):1715–1728. doi: 10.1242/dev.126.8.1715. [DOI] [PubMed] [Google Scholar]
  32. Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec;110(4):1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  33. Reissmann E., Ernsberger U., Francis-West P. H., Rueger D., Brickell P. M., Rohrer H. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development. 1996 Jul;122(7):2079–2088. doi: 10.1242/dev.122.7.2079. [DOI] [PubMed] [Google Scholar]
  34. Serbedzija G. N., Bronner-Fraser M., Fraser S. E. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development. 1989 Aug;106(4):809–816. doi: 10.1242/dev.106.4.809. [DOI] [PubMed] [Google Scholar]
  35. Serbedzija G. N., Fraser S. E., Bronner-Fraser M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development. 1990 Apr;108(4):605–612. doi: 10.1242/dev.108.4.605. [DOI] [PubMed] [Google Scholar]
  36. Sextier-Sainte-Claire Deville F., Ziller C., Le Douarin N. M. Developmental potentials of enteric neural crest-derived cells in clonal and mass cultures. Dev Biol. 1994 May;163(1):141–151. doi: 10.1006/dbio.1994.1130. [DOI] [PubMed] [Google Scholar]
  37. Shah N. M., Groves A. K., Anderson D. J. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell. 1996 May 3;85(3):331–343. doi: 10.1016/s0092-8674(00)81112-5. [DOI] [PubMed] [Google Scholar]
  38. Shah N. M., Marchionni M. A., Isaacs I., Stroobant P., Anderson D. J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell. 1994 May 6;77(3):349–360. doi: 10.1016/0092-8674(94)90150-3. [DOI] [PubMed] [Google Scholar]
  39. Sieber-Blum M., Ito K., Richardson M. K., Langtimm C. J., Duff R. S. Distribution of pluripotent neural crest cells in the embryo and the role of brain-derived neurotrophic factor in the commitment to the primary sensory neuron lineage. J Neurobiol. 1993 Feb;24(2):173–184. doi: 10.1002/neu.480240205. [DOI] [PubMed] [Google Scholar]
  40. Sommer L., Ma Q., Anderson D. J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci. 1996;8(4):221–241. doi: 10.1006/mcne.1996.0060. [DOI] [PubMed] [Google Scholar]
  41. Stemple D. L., Anderson D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992 Dec 11;71(6):973–985. doi: 10.1016/0092-8674(92)90393-q. [DOI] [PubMed] [Google Scholar]
  42. Tanabe Y., Jessell T. M. Diversity and pattern in the developing spinal cord. Science. 1996 Nov 15;274(5290):1115–1123. doi: 10.1126/science.274.5290.1115. [DOI] [PubMed] [Google Scholar]
  43. WESTON J. A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev Biol. 1963 Jun;6:279–310. doi: 10.1016/0012-1606(63)90016-2. [DOI] [PubMed] [Google Scholar]
  44. Weston J. A., Butler S. L. Temporal factors affecting localization of neural crest cells in tbe chicken embryo. Dev Biol. 1966 Oct;14(2):246–266. doi: 10.1016/0012-1606(66)90015-7. [DOI] [PubMed] [Google Scholar]
  45. Xue Z. G., Smith J., Le Douarin N. M. Differentiation of catecholaminergic cells in cultures of embryonic avian sensory ganglia. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8800–8804. doi: 10.1073/pnas.82.24.8800. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES