Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Jul 29;355(1399):931–937. doi: 10.1098/rstb.2000.0628

Coordinating cell fate and morphogenesis in Drosophila renal tubules.

C Ainsworth 1, S Wan 1, H Skaer 1
PMCID: PMC1692805  PMID: 11128986

Abstract

Using the renal tubules of Drosophila as an example, we explore how cell specification leads to the morphogenetic movements that underlie the generation of tissue architecture. Taking two stages of development, we show first that the tubule cells are allocated by signalling between the endodermal and ectodermal compartments of the posterior gut. Activation of the Wnt pathway patterns the ectodermal anlage, resulting in the expression of tubule genes in a subset of cells and their eversion from the hindgut to form the tubule primordia. We argue that early gene expression directs these morphogenetic movements but not the complete programme of tubule differentiation. In the second example we show that the allocation of the mitogenic tip cell lineage in each tubule is required not only for the normal pattern of cell division but also for the stereotyped three-dimensional arrangement of the mature tubules. Analysis of mutants in which the tip cell lineage is misspecified reveals that both daughters of the tip cell progenitor are required for the tubules to navigate through the body cavity, so that the distal tips locate in their characteristic positions. We show that the regulator of Rac, Myoblast city is essential for this second morphogenetic process.

Full Text

The Full Text of this article is available as a PDF (637.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel T., Michelson A. M., Maniatis T. A Drosophila GATA family member that binds to Adh regulatory sequences is expressed in the developing fat body. Development. 1993 Nov;119(3):623–633. doi: 10.1242/dev.119.3.623. [DOI] [PubMed] [Google Scholar]
  2. Austin J., Maine E. M., Kimble J. Genetics of intercellular signalling in C. elegans. Development. 1989;107 (Suppl):53–57. doi: 10.1242/dev.107.Supplement.53. [DOI] [PubMed] [Google Scholar]
  3. Baumann P., Skaer H. The Drosophila EGF receptor homologue (DER) is required for Malpighian tubule development. Dev Suppl. 1993:65–75. [PubMed] [Google Scholar]
  4. Blelloch R., Kimble J. Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature. 1999 Jun 10;399(6736):586–590. doi: 10.1038/21196. [DOI] [PubMed] [Google Scholar]
  5. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  6. Brönner G., Jäckle H. Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo. Mech Dev. 1991 Nov;35(3):205–211. doi: 10.1016/0925-4773(91)90019-3. [DOI] [PubMed] [Google Scholar]
  7. Cadigan K. M., Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997 Dec 15;11(24):3286–3305. doi: 10.1101/gad.11.24.3286. [DOI] [PubMed] [Google Scholar]
  8. Freeman M. Cell determination strategies in the Drosophila eye. Development. 1997 Jan;124(2):261–270. doi: 10.1242/dev.124.2.261. [DOI] [PubMed] [Google Scholar]
  9. Gaul U., Jäckle H. Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products. Cell. 1987 Nov 20;51(4):549–555. doi: 10.1016/0092-8674(87)90124-3. [DOI] [PubMed] [Google Scholar]
  10. Gaul U., Seifert E., Schuh R., Jäckle H. Analysis of Krüppel protein distribution during early Drosophila development reveals posttranscriptional regulation. Cell. 1987 Aug 14;50(4):639–647. doi: 10.1016/0092-8674(87)90037-7. [DOI] [PubMed] [Google Scholar]
  11. Guo M., Jan L. Y., Jan Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron. 1996 Jul;17(1):27–41. doi: 10.1016/s0896-6273(00)80278-0. [DOI] [PubMed] [Google Scholar]
  12. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  13. Harbecke R., Janning W. The segmentation gene Krüppel of Drosophila melanogaster has homeotic properties. Genes Dev. 1989 Jan;3(1):114–122. doi: 10.1101/gad.3.1.114. [DOI] [PubMed] [Google Scholar]
  14. Henderson S. T., Gao D., Lambie E. J., Kimble J. lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development. 1994 Oct;120(10):2913–2924. doi: 10.1242/dev.120.10.2913. [DOI] [PubMed] [Google Scholar]
  15. Hoch M., Broadie K., Jäckle H., Skaer H. Sequential fates in a single cell are established by the neurogenic cascade in the Malpighian tubules of Drosophila. Development. 1994 Dec;120(12):3439–3450. doi: 10.1242/dev.120.12.3439. [DOI] [PubMed] [Google Scholar]
  16. Kerber B., Fellert S., Hoch M. Seven-up, the Drosophila homolog of the COUP-TF orphan receptors, controls cell proliferation in the insect kidney. Genes Dev. 1998 Jun 15;12(12):1781–1786. doi: 10.1101/gad.12.12.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimble J. E., White J. G. On the control of germ cell development in Caenorhabditis elegans. Dev Biol. 1981 Jan 30;81(2):208–219. doi: 10.1016/0012-1606(81)90284-0. [DOI] [PubMed] [Google Scholar]
  18. Kiyokawa E., Hashimoto Y., Kobayashi S., Sugimura H., Kurata T., Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998 Nov 1;12(21):3331–3336. doi: 10.1101/gad.12.21.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kozopas K. M., Samos C. H., Nusse R. DWnt-2, a Drosophila Wnt gene required for the development of the male reproductive tract, specifies a sexually dimorphic cell fate. Genes Dev. 1998 Apr 15;12(8):1155–1165. doi: 10.1101/gad.12.8.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lelongt B., Trugnan G., Murphy G., Ronco P. M. Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol. 1997 Mar 24;136(6):1363–1373. doi: 10.1083/jcb.136.6.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leptin M. Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J. 1999 Jun 15;18(12):3187–3192. doi: 10.1093/emboj/18.12.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu S., Jack J. Regulatory interactions and role in cell type specification of the Malpighian tubules by the cut, Krüppel, and caudal genes of Drosophila. Dev Biol. 1992 Mar;150(1):133–143. doi: 10.1016/0012-1606(92)90013-7. [DOI] [PubMed] [Google Scholar]
  23. Liu S., McLeod E., Jack J. Four distinct regulatory regions of the cut locus and their effect on cell type specification in Drosophila. Genetics. 1991 Jan;127(1):151–159. doi: 10.1093/genetics/127.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moerman D. G. A metalloprotease prepares the way. Curr Biol. 1999 Sep 23;9(18):R701–R703. doi: 10.1016/s0960-9822(99)80444-8. [DOI] [PubMed] [Google Scholar]
  25. Nakanishi Y., Sugiura F., Kishi J., Hayakawa T. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol. 1986 Jan;113(1):201–206. doi: 10.1016/0012-1606(86)90122-3. [DOI] [PubMed] [Google Scholar]
  26. Nolan K. M., Barrett K., Lu Y., Hu K. Q., Vincent S., Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 1998 Nov 1;12(21):3337–3342. doi: 10.1101/gad.12.21.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  28. Spana E. P., Doe C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron. 1996 Jul;17(1):21–26. doi: 10.1016/s0896-6273(00)80277-9. [DOI] [PubMed] [Google Scholar]
  29. Talhouk R. S., Bissell M. J., Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol. 1992 Sep;118(5):1271–1282. doi: 10.1083/jcb.118.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wan S., Cato A. M., Skaer H. Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev Biol. 2000 Jan 1;217(1):153–165. doi: 10.1006/dbio.1999.9499. [DOI] [PubMed] [Google Scholar]
  31. Wu Y. C., Horvitz H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature. 1998 Apr 2;392(6675):501–504. doi: 10.1038/33163. [DOI] [PubMed] [Google Scholar]
  32. Zhong W., Feder J. N., Jiang M. M., Jan L. Y., Jan Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron. 1996 Jul;17(1):43–53. doi: 10.1016/s0896-6273(00)80279-2. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES