Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Sep 29;355(1401):1191–1194. doi: 10.1098/rstb.2000.0665

Deactivation, recovery from inactivation, and modulation of extra-synaptic ion currents in fish retinal ganglion cells.

A T Ishida 1
PMCID: PMC1692824  PMID: 11079396

Abstract

As is shown magnificently by Heron Island's reef, the visual environment of many fishes includes various light intensities, hues and shapes that can change on large and small scales in space and time. Several articles in this issue address why fishes are sensitive to some of these properties, and how fishes and other aquatic species have acquired or fostered these sensitivities. This article discusses contributions of extrasynaptic ion currents, in a specific population of neurons, to the detection of ambient light levels, the appearance of certain visual stimuli and the disappearance of others.

Full Text

The Full Text of this article is available as a PDF (134.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes S., Werblin F. Gated currents generate single spike activity in amacrine cells of the tiger salamander retina. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1509–1512. doi: 10.1073/pnas.83.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor D. A., Fettiplace R. Synaptic drive and impulse generation in ganglion cells of turtle retina. J Physiol. 1979 Mar;288:107–127. [PMC free article] [PubMed] [Google Scholar]
  3. Bindokas V. P., Ishida A. T. Conotoxin-sensitive and conotoxin-resistant Ca2+ currents in fish retinal ganglion cells. J Neurobiol. 1996 Apr;29(4):429–444. doi: 10.1002/(SICI)1097-4695(199604)29:4<429::AID-NEU2>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  4. Connor J. A., Walter D., McKown R. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys J. 1977 Apr;18(1):81–102. doi: 10.1016/S0006-3495(77)85598-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond J. S., Copenhagen D. R. The relationship between light-evoked synaptic excitation and spiking behaviour of salamander retinal ganglion cells. J Physiol. 1995 Sep 15;487(Pt 3):711–725. doi: 10.1113/jphysiol.1995.sp020912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fjell J., Dib-Hajj S., Fried K., Black J. A., Waxman S. G. Differential expression of sodium channel genes in retinal ganglion cells. Brain Res Mol Brain Res. 1997 Oct 15;50(1-2):197–204. doi: 10.1016/s0169-328x(97)00187-3. [DOI] [PubMed] [Google Scholar]
  7. Fohlmeister J. F., Miller R. F. Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. J Neurophysiol. 1997 Oct;78(4):1948–1964. doi: 10.1152/jn.1997.78.4.1948. [DOI] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hidaka S., Ishida A. T. Voltage-gated Na+ current availability after step- and spike-shaped conditioning depolarizations of retinal ganglion cells. Pflugers Arch. 1998 Jul;436(4):497–508. doi: 10.1007/s004240050664. [DOI] [PubMed] [Google Scholar]
  10. Huguenard J. R. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–348. doi: 10.1146/annurev.ph.58.030196.001553. [DOI] [PubMed] [Google Scholar]
  11. Kaneda M., Kaneko A. Voltage-gated sodium currents in isolated retinal ganglion cells of the cat: relation between the inactivation kinetics and the cell type. Neurosci Res. 1991 Sep;11(4):261–275. doi: 10.1016/0168-0102(91)90009-n. [DOI] [PubMed] [Google Scholar]
  12. Liu Y., Lasater E. M. Calcium currents in turtle retinal ganglion cells. II. Dopamine modulation via a cyclic AMP-dependent mechanism. J Neurophysiol. 1994 Feb;71(2):743–752. doi: 10.1152/jn.1994.71.2.743. [DOI] [PubMed] [Google Scholar]
  13. Lukasiewicz P., Werblin F. A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina. J Neurosci. 1988 Dec;8(12):4470–4481. doi: 10.1523/JNEUROSCI.08-12-04470.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rothe T., Jüttner R., Bähring R., Grantyn R. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ. J Neurobiol. 1999 Feb 5;38(2):191–206. [PubMed] [Google Scholar]
  15. Sakai H. M., Naka K. Response dynamics and receptive-field organization of catfish ganglion cells. J Gen Physiol. 1995 Jun;105(6):795–814. doi: 10.1085/jgp.105.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith R. D., Goldin A. L. Functional analysis of the rat I sodium channel in xenopus oocytes. J Neurosci. 1998 Feb 1;18(3):811–820. doi: 10.1523/JNEUROSCI.18-03-00811.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tabata T., Ishida A. T. A zinc-dependent Cl- current in neuronal somata. J Neurosci. 1999 Jul 1;19(13):5195–5204. doi: 10.1523/JNEUROSCI.19-13-05195.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tabata T., Ishida A. T. Transient and sustained depolarization of retinal ganglion cells by Ih. J Neurophysiol. 1996 May;75(5):1932–1943. doi: 10.1152/jn.1996.75.5.1932. [DOI] [PubMed] [Google Scholar]
  19. Wang G. Y., Ratto G., Bisti S., Chalupa L. M. Functional development of intrinsic properties in ganglion cells of the mammalian retina. J Neurophysiol. 1997 Dec;78(6):2895–2903. doi: 10.1152/jn.1997.78.6.2895. [DOI] [PubMed] [Google Scholar]
  20. Wang G. Y., Robinson D. W., Chalupa L. M. Calcium-activated potassium conductances in retinal ganglion cells of the ferret. J Neurophysiol. 1998 Jan;79(1):151–158. doi: 10.1152/jn.1998.79.1.151. [DOI] [PubMed] [Google Scholar]
  21. Zhang J., Shen W., Slaughter M. M. Two metabotropic gamma-aminobutyric acid receptors differentially modulate calcium currents in retinal ganglion cells. J Gen Physiol. 1997 Jul;110(1):45–58. doi: 10.1085/jgp.110.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES