Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Sep 29;355(1401):1315–1320. doi: 10.1098/rstb.2000.0691

Foveate vision in deep-sea teleosts: a comparison of primary visual and olfactory inputs.

S P Collin 1, D J Lloyd 1, H J Wagner 1
PMCID: PMC1692833  PMID: 11079422

Abstract

The relative importance of vision in a foveate group of alepocephalid teleosts is examined in the context of a deep-sea habitat beyond the penetration limits of sunlight. The large eyes of Conocara spp. possess deep convexiclivate foveae lined with Müller cells comprising radial shafts of intermediate filaments and horizontal processes. Photoreceptor cell (171.8 x 10(3) rods mm(-2)) and retinal ganglion cell (11.9 x 10(3) cells mm(-2)) densities peak within the foveal clivus and the perifloveal slopes, respectively, with a centro-peripheral gradient between 3:1 (photoreceptors) and over 20:1 (ganglion cells). The marked increase in retinal sampling localized in temporal retina, coupled with a high summation ratio (13:1), suggest that foveal vision optimizes both spatial resolving power and sensitivity in the binocular frontal visual field. The elongated optic nerve head is comprised of over 500 optic papillae, which join at the embryonic fissure to form a thin nervous sheet behind the eye. The optic nerve is divided into two axonal bundles; one receiving input from the fovea (only unmyelinated axons) and the other from non-specialized retinal regions (25% of axons are myelinated), both of which appear to be separated as they reach the visual centres of the central nervous system. Comparison of the number of primary (first-order) axonal pathways for the visual (a total of 63.4 x 10(6) rod photoreceptors) and olfactory (a total of 15.24 x 10(3) olfactory nerve axons) inputs shows a marked visual bias (ratio of 41:1). Coupled with the relative size of the optic tecta (44.0 mm3) and olfactory bulbs (0.9 mm3), vision appears to play a major role in the survival of these deep-sea teleosts and emphasizes that ecological and behavioural strategies account for significant variation in sensory brain structure.

Full Text

The Full Text of this article is available as a PDF (751.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collin S. P., Collin H. B. The foveal photoreceptor mosaic in the pipefish, Corythoichthyes paxtoni (Syngnathidae, Teleostei). Histol Histopathol. 1999 Apr;14(2):369–382. doi: 10.14670/HH-14.369. [DOI] [PubMed] [Google Scholar]
  2. Collin S. P., Collin H. B. Topographic analysis of the retinal ganglion cell layer and optic nerve in the sandlance Limnichthyes fasciatus (Creeiidae, Perciformes). J Comp Neurol. 1988 Dec 8;278(2):226–241. doi: 10.1002/cne.902780206. [DOI] [PubMed] [Google Scholar]
  3. Collin S. P., Hoskins R. V., Partridge J. C. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behav Evol. 1998;51(6):291–314. doi: 10.1159/000006544. [DOI] [PubMed] [Google Scholar]
  4. Collin S. P., Pettigrew J. D. Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav Evol. 1989;34(3):184–192. doi: 10.1159/000116504. [DOI] [PubMed] [Google Scholar]
  5. Collin S. P., Pettigrew J. D. Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol. 1988;31(5):269–282. doi: 10.1159/000116594. [DOI] [PubMed] [Google Scholar]
  6. DOEVING K. B., GEMNE G. ELECTROPHYSIOLOGICAL AND HISTOLOGICAL PROPERTIES OF THE OLFACTORY TRACT OF THE BURBOT (LOTA LOTA L.). J Neurophysiol. 1965 Jan;28:139–153. doi: 10.1152/jn.1965.28.1.139. [DOI] [PubMed] [Google Scholar]
  7. Easter S. S., Jr, Bratton B., Scherer S. S. Growth-related order of the retinal fiber layer in goldfish. J Neurosci. 1984 Aug;4(8):2173–2190. doi: 10.1523/JNEUROSCI.04-08-02173.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huber R., Rylander M. K. Quantitative histological studies of the optic tectum in six species of Notropis and Cyprinella (Cyprinidae, Teleostei). J Hirnforsch. 1991;32(3):309–316. [PubMed] [Google Scholar]
  9. Huber R., van Staaden M. J., Kaufman L. S., Liem K. F. Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav Evol. 1997;50(3):167–182. doi: 10.1159/000113330. [DOI] [PubMed] [Google Scholar]
  10. Locket N. A. Problems of deep foveas. Aust N Z J Ophthalmol. 1992 Nov;20(4):281–295. doi: 10.1111/j.1442-9071.1992.tb00740.x. [DOI] [PubMed] [Google Scholar]
  11. Wagner H. J., Fröhlich E., Negishi K., Collin S. P. The eyes of deep-sea fish. II. Functional morphology of the retina. Prog Retin Eye Res. 1998 Oct;17(4):637–685. doi: 10.1016/s1350-9462(98)00003-2. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES