Abstract
Intermediate filaments in taste organs of terrestrial (human and chick) as well as aquatic (Xenopus laevis) species were detected using immunohistochemistry and electron microscopy. During development, the potential importance of the interface between the taste bud primordium and non-gustatory adjacent tissues is evidenced by the distinct immunoreactivity of a subpopulation of taste bud cells for cytokeratins and vimentin. In human foetuses, the selective molecular marker for taste bud primordia, cytokeratin 20, is not detectable prior to the ingrowth of nerve fibres into the epithelium, which supports the hypothesis that nerve fibres are necessary for initiating taste bud development. Another intermediate filament protein, vimentin, occurs in derivatives of mesoderm, but usually not in epithelium. In humans, vimentin immunoreactivity is expressed mainly in border (marginal) epithelial cells of taste bud primordia, while in chick, vimentin expression occurs in most taste bud cells, whereas non-gustatory epithelium is vimentin immunonegative. Our chick data suggest a relationship between the degree of vimentin expression and taste bud cell proliferation especially during the perihatching period. It is suggested that surrounding epithelial cells (human) and mesenchymal cells (chick) may be contributing sources of developing taste buds. The dense perinuclear network of intermediate filaments especially in dark (i.e. non-sensory) taste disc cells of Xenopus indicates that vimentin filaments also might be associated with cells of non-gustatory function. These results indicate that the mechanisms of taste bud differentiation from source tissues may differ among vertebrates of different taxa.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki K., Osumi-Yamashita N., Ninomiya Y., Eto K. Differential expression of N-CAM, vimentin and MAP1B during initial pathfinding of olfactory receptor neurons in the mouse embryo. Anat Embryol (Berl) 1995 Sep;192(3):211–220. doi: 10.1007/BF00184745. [DOI] [PubMed] [Google Scholar]
- Barlow L. A., Chien C. B., Northcutt R. G. Embryonic taste buds develop in the absence of innervation. Development. 1996 Apr;122(4):1103–1111. doi: 10.1242/dev.122.4.1103. [DOI] [PubMed] [Google Scholar]
- Dumortier J., Daemi N., Pourreyron C., Anderson W., Bellaton C., Jacquier M. F., Bertrand S., Chayvialle J. A., Remy L. Loss of epithelial differentiation markers and acquisition of vimentin expression after xenograft with laminin-1 enhance migratory and invasive abilities of human colon cancer cells LoVo C5. Differentiation. 1998 Jul;63(3):141–150. doi: 10.1046/j.1432-0436.1998.6330141.x. [DOI] [PubMed] [Google Scholar]
- Ganchrow D., Ganchrow J. R., Goldstein R. S. Ultrastructure of palatal taste buds in the perihatching chick. Am J Anat. 1991 Sep;192(1):69–78. doi: 10.1002/aja.1001920108. [DOI] [PubMed] [Google Scholar]
- Ganchrow J. R., Ganchrow D. Taste bud development in chickens (Gallus gallus domesticus). Anat Rec. 1987 May;218(1):88–93. doi: 10.1002/ar.1092180113. [DOI] [PubMed] [Google Scholar]
- Hosley M. A., Hughes S. E., Oakley B. Neural induction of taste buds. J Comp Neurol. 1987 Jun 8;260(2):224–232. doi: 10.1002/cne.902600206. [DOI] [PubMed] [Google Scholar]
- MacDonald K. P., Mackay-Sim A., Bushell G. R., Bartlett P. F. Olfactory neuronal cell lines generated by retroviral insertion of the n-myc oncogene display different developmental phenotypes. J Neurosci Res. 1996 Aug 1;45(3):237–247. doi: 10.1002/(SICI)1097-4547(19960801)45:3<237::AID-JNR5>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Oakley B. Vertebrate taste-bud development: are salamanders the model? Trends Neurosci. 1998 Aug;21(8):337–338. doi: 10.1016/s0166-2236(98)01255-7. [DOI] [PubMed] [Google Scholar]
- Raderman-Little R. The effect of temperature on the turnover of taste bud cells in catfish. Cell Tissue Kinet. 1979 May;12(3):269–280. doi: 10.1111/j.1365-2184.1979.tb00149.x. [DOI] [PubMed] [Google Scholar]
- Stone L. M., Finger T. E., Tam P. P., Tan S. S. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1916–1920. doi: 10.1073/pnas.92.6.1916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witt M., Ganchrow J. R., Ganchrow D. Distribution of vimentin in the developing chick taste bud during the perihatching period. Cell Mol Biol (Noisy-le-grand) 1999 May;45(3):303–316. [PubMed] [Google Scholar]
- Witt M., Kasper M. Distribution of cytokeratin filaments and vimentin in developing human taste buds. Anat Embryol (Berl) 1999 Apr;199(4):291–299. doi: 10.1007/s004290050229. [DOI] [PubMed] [Google Scholar]
- Witt M., Kasper M. Immunohistochemical distribution of CD44 and some of its isoforms during human taste bud development. Histochem Cell Biol. 1998 Jul;110(1):95–103. doi: 10.1007/s004180050270. [DOI] [PubMed] [Google Scholar]
- Witt M., Reutter K. Embryonic and early fetal development of human taste buds: a transmission electron microscopical study. Anat Rec. 1996 Dec;246(4):507–523. doi: 10.1002/(SICI)1097-0185(199612)246:4<507::AID-AR10>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Witt M. Ultrastructure of the taste disc in the red-bellied toad Bombina orientalis (Discoglossidae, Salientia). Cell Tissue Res. 1993 Apr;272(1):59–70. doi: 10.1007/BF00323571. [DOI] [PubMed] [Google Scholar]
- Zhang C., Oakley B. The distribution and origin of keratin 20-containing taste buds in rat and human. Differentiation. 1996 Dec;61(2):121–127. doi: 10.1046/j.1432-0436.1996.6120121.x. [DOI] [PubMed] [Google Scholar]