Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Oct 29;355(1402):1499–1510. doi: 10.1098/rstb.2000.0710

Energy dissipation and radical scavenging by the plant phenylpropanoid pathway.

S C Grace 1, B A Logan 1
PMCID: PMC1692864  PMID: 11128003

Abstract

Environmental stresses such as high light, low temperatures, pathogen infection and nutrient deficiency can lead to increased production of free radicals and other oxidative species in plants. A growing body of evidence suggests that plants respond to these biotic and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species. Efforts to understand this acclimatory process have focused on the components of the 'classical' antioxidant system, i.e. superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate reductase, glutathione reductase and the low molecular weight antioxidants ascorbate and glutathione. However, relatively few studies have explored the role of secondary metabolic pathways in plant response to oxidative stress. A case in point is the phenylpropanoid pathway which is responsible for the synthesis of a diverse array of phenolic metabolites such as flavonoids, tannins, hydroxycinnamate esters and the structural polymer lignin. These compounds are often induced by stress and serve specific roles in plant protection, i.e. pathogen defence, ultraviolet screening, antiherbivory, or structural components of the cell wall. This review will highlight a novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) and assess its possible role in abiotic stress tolerance. The relationship between CGA biosynthesis and photosynthetic carbon metabolism will also be discussed. Based on the properties of this model phenolic metabolite, we propose that under stress conditions phenylpropanoid biosynthesis may represent an alternative pathway for photochemical energy dissipation that has the added benefit of enhancing the antioxidant capacity of the cell.

Full Text

The Full Text of this article is available as a PDF (409.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada Kozi. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):601–639. doi: 10.1146/annurev.arplant.50.1.601. [DOI] [PubMed] [Google Scholar]
  2. Boyer R. F., Clark H. M., LaRoche A. P. Reduction and release of ferritin iron by plant phenolics. J Inorg Biochem. 1988 Mar;32(3):171–181. doi: 10.1016/0162-0134(88)80025-4. [DOI] [PubMed] [Google Scholar]
  3. Castelluccio C., Paganga G., Melikian N., Bolwell G. P., Pridham J., Sampson J., Rice-Evans C. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 1995 Jul 10;368(1):188–192. doi: 10.1016/0014-5793(95)00639-q. [DOI] [PubMed] [Google Scholar]
  4. Coley P. D., Bryant J. P., Chapin F. S., 3rd Resource availability and plant antiherbivore defense. Science. 1985 Nov 22;230(4728):895–899. doi: 10.1126/science.230.4728.895. [DOI] [PubMed] [Google Scholar]
  5. Delledonne M., Xia Y., Dixon R. A., Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998 Aug 6;394(6693):585–588. doi: 10.1038/29087. [DOI] [PubMed] [Google Scholar]
  6. Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Durner J., Wendehenne D., Klessig D. F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10328–10333. doi: 10.1073/pnas.95.17.10328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehness R., Ecker M., Godt D. E., Roitsch T. Glucose and Stress Independently Regulate Source and Sink Metabolism and Defense Mechanisms via Signal Transduction Pathways Involving Protein Phosphorylation. Plant Cell. 1997 Oct;9(10):1825–1841. doi: 10.1105/tpc.9.10.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grace S. C., Logan B. A. Acclimation of Foliar Antioxidant Systems to Growth Irradiance in Three Broad-Leaved Evergreen Species. Plant Physiol. 1996 Dec;112(4):1631–1640. doi: 10.1104/pp.112.4.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grace S. C., Salgo M. G., Pryor W. A. Scavenging of peroxynitrite by a phenolic/peroxidase system prevents oxidative damage to DNA. FEBS Lett. 1998 Apr 10;426(1):24–28. doi: 10.1016/s0014-5793(98)00298-1. [DOI] [PubMed] [Google Scholar]
  11. Grace S. C., Yamasaki H., Pryor W. A. Spin stabilizing approach to radical characterization of phenylpropanoid antioxidants: an ESR study of chlorogenic acid oxidation in the horseradish peroxidase, tyrosinase, and ferrylmyoglobin protein radical systems. Basic Life Sci. 1999;66:435–450. doi: 10.1007/978-1-4615-4139-4_23. [DOI] [PubMed] [Google Scholar]
  12. Gunther M. R., Hanna P. M., Mason R. P., Cohen M. S. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch Biochem Biophys. 1995 Jan 10;316(1):515–522. doi: 10.1006/abbi.1995.1068. [DOI] [PubMed] [Google Scholar]
  13. Henriksen A., Smith A. T., Gajhede M. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. J Biol Chem. 1999 Dec 3;274(49):35005–35011. doi: 10.1074/jbc.274.49.35005. [DOI] [PubMed] [Google Scholar]
  14. Herrmann K. M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell. 1995 Jul;7(7):907–919. doi: 10.1105/tpc.7.7.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hirt H. Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2405–2407. doi: 10.1073/pnas.97.6.2405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karpinski S., Escobar C., Karpinska B., Creissen G., Mullineaux P. M. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell. 1997 Apr;9(4):627–640. doi: 10.1105/tpc.9.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kono Y., Kobayashi K., Tagawa S., Adachi K., Ueda A., Sawa Y., Shibata H. Antioxidant activity of polyphenolics in diets. Rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen. Biochim Biophys Acta. 1997 Jun 6;1335(3):335–342. doi: 10.1016/s0304-4165(96)00151-1. [DOI] [PubMed] [Google Scholar]
  18. Kühnl T., Koch U., Heller W., Wellmann E. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys. 1987 Oct;258(1):226–232. doi: 10.1016/0003-9861(87)90339-0. [DOI] [PubMed] [Google Scholar]
  19. Landry L. G., Chapple C. C., Last R. L. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol. 1995 Dec;109(4):1159–1166. doi: 10.1104/pp.109.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  21. Lewis N. G., Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455–496. doi: 10.1146/annurev.pp.41.060190.002323. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Trush M. A. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res. 1994 Apr 1;54(7 Suppl):1895s–1898s. [PubMed] [Google Scholar]
  23. Maher E. A., Bate N. J., Ni W., Elkind Y., Dixon R. A., Lamb C. J. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7802–7806. doi: 10.1073/pnas.91.16.7802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Michon T., Chenu M., Kellershon N., Desmadril M., Guéguen J. Horseradish peroxidase oxidation of tyrosine-containing peptides and their subsequent polymerization: a kinetic study. Biochemistry. 1997 Jul 15;36(28):8504–8513. doi: 10.1021/bi963168z. [DOI] [PubMed] [Google Scholar]
  25. Murray J. R., Hackett W. P. Dihydroflavonol Reductase Activity in Relation to Differential Anthocyanin Accumulation in Juvenile and Mature Phase Hedera helix L. Plant Physiol. 1991 Sep;97(1):343–351. doi: 10.1104/pp.97.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noctor Graham, Foyer Christine H. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):249–279. doi: 10.1146/annurev.arplant.49.1.249. [DOI] [PubMed] [Google Scholar]
  27. Nose M., Bernards M. A., Furlan M., Zajicek J., Eberhardt T. L., Lewis N. G. Towards the specification of consecutive steps in macromolecular lignin assembly. Phytochemistry. 1995 May;39(1):71–79. doi: 10.1016/0031-9422(95)95268-y. [DOI] [PubMed] [Google Scholar]
  28. Rahman A., Shahabuddin, Hadi S. M., Parish J. H., Ainley K. Strand scission in DNA induced by quercetin and Cu(II): role of Cu(I) and oxygen free radicals. Carcinogenesis. 1989 Oct;10(10):1833–1839. doi: 10.1093/carcin/10.10.1833. [DOI] [PubMed] [Google Scholar]
  29. Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
  30. Sadka A., DeWald D. B., May G. D., Park W. D., Mullet J. E. Phosphate Modulates Transcription of Soybean VspB and Other Sugar-Inducible Genes. Plant Cell. 1994 May;6(5):737–749. doi: 10.1105/tpc.6.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Streatfield S. J., Weber A., Kinsman E. A., Häusler R. E., Li J., Post-Beittenmiller D., Kaiser W. M., Pyke K. A., Flügge U. I., Chory J. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell. 1999 Sep;11(9):1609–1622. doi: 10.1105/tpc.11.9.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takahashi M. A., Asada K. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys. 1983 Oct 15;226(2):558–566. doi: 10.1016/0003-9861(83)90325-9. [DOI] [PubMed] [Google Scholar]
  33. Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JM, Roberts K, Martin C. Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants . Plant Cell. 1998 Nov;10(11):1801–1816. doi: 10.1105/tpc.10.11.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsukaya H., Ohshima T., Naito S., Chino M., Komeda Y. Sugar-Dependent Expression of the CHS-A Gene for Chalcone Synthase from Petunia in Transgenic Arabidopsis. Plant Physiol. 1991 Dec;97(4):1414–1421. doi: 10.1104/pp.97.4.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D., Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997 Aug 15;16(16):4806–4816. doi: 10.1093/emboj/16.16.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu G., Shortt B. J., Lawrence E. B., Leon J., Fitzsimmons K. C., Levine E. B., Raskin I., Shah D. M. Activation of Host Defense Mechanisms by Elevated Production of H2O2 in Transgenic Plants. Plant Physiol. 1997 Oct;115(2):427–435. doi: 10.1104/pp.115.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamanaka N., Oda O., Nagao S. Prooxidant activity of caffeic acid, dietary non-flavonoid phenolic acid, on Cu2+-induced low density lipoprotein oxidation. FEBS Lett. 1997 Mar 24;405(2):186–190. doi: 10.1016/s0014-5793(97)00185-3. [DOI] [PubMed] [Google Scholar]
  38. Yamasaki H., Grace S. C. EPR detection of phytophenoxyl radicals stabilized by zinc ions: evidence for the redox coupling of plant phenolics with ascorbate in the H2O2-peroxidase system. FEBS Lett. 1998 Feb 6;422(3):377–380. doi: 10.1016/s0014-5793(98)00048-9. [DOI] [PubMed] [Google Scholar]
  39. Yamasaki H., Sakihama Y., Ikehara N. Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2. Plant Physiol. 1997 Dec;115(4):1405–1412. doi: 10.1104/pp.115.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yamasaki H., Uefuji H., Sakihama Y. Bleaching of the red anthocyanin induced by superoxide radical. Arch Biochem Biophys. 1996 Aug 1;332(1):183–186. doi: 10.1006/abbi.1996.0331. [DOI] [PubMed] [Google Scholar]
  41. Yao K., De Luca V., Brisson N. Creation of a Metabolic Sink for Tryptophan Alters the Phenylpropanoid Pathway and the Susceptibility of Potato to Phytophthora infestans. Plant Cell. 1995 Nov;7(11):1787–1799. doi: 10.1105/tpc.7.11.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yoshimura K., Yabuta Y., Ishikawa T., Shigeoka S. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 2000 May;123(1):223–234. doi: 10.1104/pp.123.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Heerden P. S., Towers G. H., Lewis N. G. Nitrogen metabolism in Lignifying Pinus taeda cell cultures. J Biol Chem. 1996 May 24;271(21):12350–12355. doi: 10.1074/jbc.271.21.12350. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES