Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Oct 29;355(1402):1511–1516. doi: 10.1098/rstb.2000.0711

Do oxidative stress conditions impairing photosynthesis in the light manifest as photoinhibition?

E Hideg 1, T Kálai 1, K Hideg 1, I Vass 1
PMCID: PMC1692868  PMID: 11128004

Abstract

We compared the effect of photoinhibition by excess photosynthetically active radiation (PAR), UV-B irradiation combined with PAR, low temperature stress and paraquat treatment on photosystem (PS) II. Although the experimental conditions ensured that the four studied stress conditions resulted in approximately the same extent of PS II inactivation, they clearly followed different molecular mechanisms. Our results show that singlet oxygen production in inactivated PS II reaction centres is a unique characteristic of photoinhibition by excess PAR. Neither the accumulation of inactive PS II reaction centres (as in UV-B or chilling stress), nor photo-oxidative damage of PS II (as in paraquat stress) is able to produce the special oxidizing conditions characteristic of acceptor-side-induced photoinhibition.

Full Text

The Full Text of this article is available as a PDF (388.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aro E. M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta. 1993 Jul 5;1143(2):113–134. doi: 10.1016/0005-2728(93)90134-2. [DOI] [PubMed] [Google Scholar]
  2. Babbs C. F., Pham J. A., Coolbaugh R. C. Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 1989 Aug;90(4):1267–1270. doi: 10.1104/pp.90.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barber J., Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 1992 Feb;17(2):61–66. doi: 10.1016/0968-0004(92)90503-2. [DOI] [PubMed] [Google Scholar]
  4. Greenberg B. M., Gaba V., Canaani O., Malkin S., Mattoo A. K., Edelman M. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6617–6620. doi: 10.1073/pnas.86.17.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hetherington S. E., He J., Smillie R. M. Photoinhibition at low temperature in chilling-sensitive and -resistant plants. Plant Physiol. 1989 Aug;90(4):1609–1615. doi: 10.1104/pp.90.4.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hideg E., Kálai T., Hideg K., Vass I. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry. 1998 Aug 18;37(33):11405–11411. doi: 10.1021/bi972890+. [DOI] [PubMed] [Google Scholar]
  7. Hideg E., Vass I., Kálai T., Hideg K. Singlet oxygen detection with sterically hindered amine derivatives in plants under light stress. Methods Enzymol. 2000;319:77–85. doi: 10.1016/s0076-6879(00)19010-x. [DOI] [PubMed] [Google Scholar]
  8. Hirayama S., Ueda R., Sugata K. Evaluation of active oxygen effect on photosynthesis of Chlorella vulgaris. Free Radic Res. 1996 Sep;25(3):247–254. doi: 10.3109/10715769609149050. [DOI] [PubMed] [Google Scholar]
  9. Komatsu H., Okada S. Ethanol-enhanced permeation of phosphatidylcholine/ phosphatidylethanolamine mixed liposomal membranes due to ethanol-induced lateral phase separation. Biochim Biophys Acta. 1996 Aug 14;1283(1):73–79. doi: 10.1016/0005-2736(96)00082-x. [DOI] [PubMed] [Google Scholar]
  10. Kálai T., Hideg E., Vass I., Hideg K. Double (fluorescent and spin) sensors for detection of reactive oxygen species in the thylakoid membrane. Free Radic Biol Med. 1998 Mar 1;24(4):649–652. doi: 10.1016/s0891-5849(97)00339-0. [DOI] [PubMed] [Google Scholar]
  11. Telfer A., Bishop S. M., Phillips D., Barber J. Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J Biol Chem. 1994 May 6;269(18):13244–13253. [PubMed] [Google Scholar]
  12. Vass I., Kirilovsky D., Etienne A. L. UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry. 1999 Sep 28;38(39):12786–12794. doi: 10.1021/bi991094w. [DOI] [PubMed] [Google Scholar]
  13. Vass I., Sass L., Spetea C., Bakou A., Ghanotakis D. F., Petrouleas V. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry. 1996 Jul 9;35(27):8964–8973. doi: 10.1021/bi9530595. [DOI] [PubMed] [Google Scholar]
  14. Vass I., Styring S. Characterization of chlorophyll triplet promoting states in photosystem II sequentially induced during photoinhibition. Biochemistry. 1993 Apr 6;32(13):3334–3341. doi: 10.1021/bi00064a016. [DOI] [PubMed] [Google Scholar]
  15. Vass I., Styring S., Hundal T., Koivuniemi A., Aro E., Andersson B. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408–1412. doi: 10.1073/pnas.89.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vass I., Styring S. Spectroscopic characterization of triplet forming states in photosystem II. Biochemistry. 1992 Jul 7;31(26):5957–5963. doi: 10.1021/bi00141a002. [DOI] [PubMed] [Google Scholar]
  17. Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yruela I., Pueyo J. J., Alonso P. J., Picorel R. Photoinhibition of photosystem II from higher plants. Effect of copper inhibition. J Biol Chem. 1996 Nov 1;271(44):27408–27415. doi: 10.1074/jbc.271.44.27408. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES