Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Oct 29;355(1402):1371–1384. doi: 10.1098/rstb.2000.0699

Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.

A M Gilmor 1, S Itoh 1, Govindjee 1
PMCID: PMC1692871  PMID: 11127992

Abstract

This study presents a novel measurement, and simulation, of the time-resolved room temperature chlorophyll a fluorescence emission spectra from leaves of the barley wild-type and chlorophyll-b-deficient chlorina (clo) f2 and f104 mutants. The primary data were collected with a streak-camera-based picosecond-pulsed fluorometer that simultaneously records the spectral distribution and time dependence of the fluorescence decay. A new global spectral-kinetic analysis programme method, termed the double convolution integral (DCI) method, was developed to convolve the exciting laser pulse shape with a multimodal-distributed decay profile function that is again convolved with the spectral emission band amplitude functions. We report several key results obtained by the simultaneous spectral-kinetic acquisition and DCI methods. First, under conditions of dark-level fluorescence, when photosystem II (PS II) photochemistry is at a maximum at room temperature, both the clo f2 and clo f104 mutants exhibit very similar PS II spectral-decay contours as the wild-type (wt), with the main band centred around 685 nm. Second, dark-level fluorescence is strongly influenced beyond 700 nm by broad emission bands from PS I, and its associated antennae proteins, which exhibit much more rapid decay kinetics and strong integrated amplitudes. In particular a 705-720 nm band is present in all three samples, with a 710 nm band predominating in the clo f2 leaves. When the PS II photochemistry becomes inhibited, maximizing the fluorescence yield, both the clo f104 mutant and the wt exhibit lifetime increases for their major distribution modes from the minimal 205-500 ps range to the maximal 1500-2500 ps range for both the 685 nm and 740 nm bands. The clo f2 mutant, however, exhibits several unique spectral-kinetic properties, attributed to its unique PS I antennae and thylakoid structure, indicating changes in both PS II fluorescence reabsorption and PS II to PS I energy transfer pathways compared to the wt and clo f104. Photoprotective energy dissipation mediated by the xanthophyll cycle pigments and the PsbS protein was uninhibited in the clo f104 mutant but, as commonly reported in the literature, significantly inhibited in the clo f2; the inhibited energy dissipation is partly attributed to its thylakoid structure and PS II to PS I energy transfer properties. It is concluded that it is imperative with steady-state fluorometers, especially for in vivo studies of PS II efficiency or photoprotective energy dissipation, to quantify the influence of the PS I spectral emission.

Full Text

The Full Text of this article is available as a PDF (841.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agati G., Cerovic Z. G., Moya I. The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: the role of the photosystem I contribution to the 735 nm fluorescence band. Photochem Photobiol. 2000 Jul;72(1):75–84. doi: 10.1562/0031-8655(2000)072<0075:teodtu>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  2. Alcala J. R., Gratton E., Prendergast F. G. Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J. 1987 Apr;51(4):587–596. doi: 10.1016/S0006-3495(87)83383-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  4. Gilmore A. M., Shinkarev V. P., Hazlett T. L., Govindjee G. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry. 1998 Sep 29;37(39):13582–13593. doi: 10.1021/bi981384x. [DOI] [PubMed] [Google Scholar]
  5. Govindjee, Yang L. Structure of the red fluorescence band in chloroplasts. J Gen Physiol. 1966 Mar;49(4):763–780. doi: 10.1085/jgp.49.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knoetzel J., Bossmann B., Grimme L. H. Chlorina and viridis mutants of barley (Hordeum vulgare L.) allow assignment of long-wavelength chlorophyll forms to individual Lhca proteins of photosystem I in vivo. FEBS Lett. 1998 Oct 9;436(3):339–342. doi: 10.1016/s0014-5793(98)01158-2. [DOI] [PubMed] [Google Scholar]
  7. Knutson J. R. Alternatives to consider in fluorescence decay analysis. Methods Enzymol. 1992;210:357–374. doi: 10.1016/0076-6879(92)10018-9. [DOI] [PubMed] [Google Scholar]
  8. Li X. P., Björkman O., Shih C., Grossman A. R., Rosenquist M., Jansson S., Niyogi K. K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000 Jan 27;403(6768):391–395. doi: 10.1038/35000131. [DOI] [PubMed] [Google Scholar]
  9. Roelofs T. A., Lee C. H., Holzwarth A. R. Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts: A new approach to the characterization of the primary processes in photosystem II alpha- and beta-units. Biophys J. 1992 May;61(5):1147–1163. doi: 10.1016/s0006-3495(92)81924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Straume M., Johnson M. L. Analysis of residuals: criteria for determining goodness-of-fit. Methods Enzymol. 1992;210:87–105. doi: 10.1016/0076-6879(92)10007-z. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES