Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Oct 29;355(1402):1477–1488. doi: 10.1098/rstb.2000.0708

Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo.

H Yamasaki 1
PMCID: PMC1692879  PMID: 11128001

Abstract

Air pollution studies have shown that nitric oxide (NO), a gaseous free radical, is a potent photosynthetic inhibitor that reduces CO2 uptake activity in leaves. It is now recognized that NO is not only an air pollutant but also an endogenously produced metabolite, which may play a role in regulating plant cell functions. Although many studies have suggested the presence of mammalian-type NO synthase (NOS) in plants, the source of NO is still not clear. There has been a number of studies indicating that plant cells possess a nitrite-dependent NO production pathway which can be distinguished from the NOS-mediated reaction. Nitrate reductase (NR) has been recently found to be capable of producing NO through one-electron reduction of nitrite using NAD(P)H as an electron donor. This review focuses on current understanding of the mechanism for the nitrite-dependent NO production in plants. Impacts of NO produced by NR on photosynthesis are discussed in association with photo-oxidative stress in leaves.

Full Text

The Full Text of this article is available as a PDF (225.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arteel G. E., Briviba K., Sies H. Protection against peroxynitrite. FEBS Lett. 1999 Feb 26;445(2-3):226–230. doi: 10.1016/s0014-5793(99)00073-3. [DOI] [PubMed] [Google Scholar]
  2. Asada Kozi. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):601–639. doi: 10.1146/annurev.arplant.50.1.601. [DOI] [PubMed] [Google Scholar]
  3. Athwal G. S., Huber J. L., Huber S. C. Phosphorylated nitrate reductase and 14-3-3 proteins. Site of interaction, effects of ions, and evidence for an amp-binding site on 14-3-3 proteins. Plant Physiol. 1998 Nov;118(3):1041–1048. doi: 10.1104/pp.118.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barber M. J., Kay C. J. Superoxide production during reduction of molecular oxygen by assimilatory nitrate reductase. Arch Biochem Biophys. 1996 Feb 15;326(2):227–232. doi: 10.1006/abbi.1996.0069. [DOI] [PubMed] [Google Scholar]
  5. Beligni Ma, Lamattina L. Is nitric oxide toxic or protective? Trends Plant Sci. 1999 Aug;4(8):299–300. doi: 10.1016/s1360-1385(99)01451-x. [DOI] [PubMed] [Google Scholar]
  6. Bolwell G. P. Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol. 1999 Aug;2(4):287–294. doi: 10.1016/S1369-5266(99)80051-X. [DOI] [PubMed] [Google Scholar]
  7. Campbell Wilbur H. NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):277–303. doi: 10.1146/annurev.arplant.50.1.277. [DOI] [PubMed] [Google Scholar]
  8. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cueto M., Hernández-Perera O., Martín R., Bentura M. L., Rodrigo J., Lamas S., Golvano M. P. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett. 1996 Dec 2;398(2-3):159–164. doi: 10.1016/s0014-5793(96)01232-x. [DOI] [PubMed] [Google Scholar]
  10. Dean J. V., Harper J. E. Nitric Oxide and Nitrous Oxide Production by Soybean and Winged Bean during the in Vivo Nitrate Reductase Assay. Plant Physiol. 1986 Nov;82(3):718–723. doi: 10.1104/pp.82.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dean J. V., Harper J. E. The Conversion of Nitrite to Nitrogen Oxide(s) by the Constitutive NAD(P)H-Nitrate Reductase Enzyme from Soybean. Plant Physiol. 1988 Oct;88(2):389–395. doi: 10.1104/pp.88.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Delledonne M., Xia Y., Dixon R. A., Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998 Aug 6;394(6693):585–588. doi: 10.1038/29087. [DOI] [PubMed] [Google Scholar]
  13. Demmig-Adams B., Gilmore A. M., Adams W. W., 3rd Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J. 1996 Mar;10(4):403–412. doi: 10.1096/fasebj.10.4.8647339. [DOI] [PubMed] [Google Scholar]
  14. Di Mascio P., Briviba K., Bechara E. J., Medeiros M. H., Sies H. Reaction of peroxynitrite and hydrogen peroxide to produce singlet molecular oxygen (1deltag). Methods Enzymol. 1996;269:395–400. doi: 10.1016/s0076-6879(96)69040-5. [DOI] [PubMed] [Google Scholar]
  15. Durner J., Klessig D. F. Nitric oxide as a signal in plants. Curr Opin Plant Biol. 1999 Oct;2(5):369–374. doi: 10.1016/s1369-5266(99)00007-2. [DOI] [PubMed] [Google Scholar]
  16. Gilmore A. M., Yamamoto H. Y. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1899–1903. doi: 10.1073/pnas.89.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grace S. C., Salgo M. G., Pryor W. A. Scavenging of peroxynitrite by a phenolic/peroxidase system prevents oxidative damage to DNA. FEBS Lett. 1998 Apr 10;426(1):24–28. doi: 10.1016/s0014-5793(98)00298-1. [DOI] [PubMed] [Google Scholar]
  18. Haenen G. R., Bast A. Nitric oxide radical scavenging of flavonoids. Methods Enzymol. 1999;301:490–503. doi: 10.1016/s0076-6879(99)01112-x. [DOI] [PubMed] [Google Scholar]
  19. Harper J. E. Evolution of Nitrogen Oxide(s) during In Vivo Nitrate Reductase Assay of Soybean Leaves. Plant Physiol. 1981 Dec;68(6):1488–1493. doi: 10.1104/pp.68.6.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hemmens B., Mayer B. Enzymology of nitric oxide synthases. Methods Mol Biol. 1998;100:1–32. doi: 10.1385/1-59259-749-1:1. [DOI] [PubMed] [Google Scholar]
  21. Ischiropoulos H., Gow A., Thom S. R., Kooy N. W., Royall J. A., Crow J. P. Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol. 1999;301:367–373. doi: 10.1016/s0076-6879(99)01100-3. [DOI] [PubMed] [Google Scholar]
  22. Ji X. B., Hollocher T. C. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Commun. 1988 Nov 30;157(1):106–108. doi: 10.1016/s0006-291x(88)80018-4. [DOI] [PubMed] [Google Scholar]
  23. Kaiser W. M., Huber S. C. Posttranslational Regulation of Nitrate Reductase in Higher Plants. Plant Physiol. 1994 Nov;106(3):817–821. doi: 10.1104/pp.106.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kelker H. C., Filner P. Regulation of nitrite reductase and its relationship to the regulation of nitrate reductase in cultured tobacco cells. Biochim Biophys Acta. 1971 Oct;252(1):69–82. doi: 10.1016/0304-4165(71)90093-6. [DOI] [PubMed] [Google Scholar]
  25. Kinoshita T., Shimazaki K. i. Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 1999 Oct 15;18(20):5548–5558. doi: 10.1093/emboj/18.20.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klepper L. Comparison between NO(x) Evolution Mechanisms of Wild-Type and nr(1) Mutant Soybean Leaves. Plant Physiol. 1990 May;93(1):26–32. doi: 10.1104/pp.93.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kolber Z., Zehr J., Falkowski P. Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II. Plant Physiol. 1988 Nov;88(3):923–929. doi: 10.1104/pp.88.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kong S. K., Yim M. B., Stadtman E. R., Chock P. B. Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: Lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3377–3382. doi: 10.1073/pnas.93.8.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koppenol W. H. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med. 1998 Sep;25(4-5):385–391. doi: 10.1016/s0891-5849(98)00093-8. [DOI] [PubMed] [Google Scholar]
  30. Kröncke K. D., Kolb-Bachofen V. Detection of nitric oxide interaction with zinc finger proteins. Methods Enzymol. 1996;269:279–284. doi: 10.1016/s0076-6879(96)69028-4. [DOI] [PubMed] [Google Scholar]
  31. Lancaster J. R., Jr Diffusion of free nitric oxide. Methods Enzymol. 1996;268:31–50. doi: 10.1016/s0076-6879(96)68007-0. [DOI] [PubMed] [Google Scholar]
  32. Li X., De Sarno P., Song L., Beckman J. S., Jope R. S. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem J. 1998 Apr 15;331(Pt 2):599–606. doi: 10.1042/bj3310599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lundberg J. O., Carlsson S., Engstrand L., Morcos E., Wiklund N. P., Weitzberg E. Urinary nitrite: more than a marker of infection. Urology. 1997 Aug;50(2):189–191. doi: 10.1016/S0090-4295(97)00257-4. [DOI] [PubMed] [Google Scholar]
  34. Mathieu C., Moreau S., Frendo P., Puppo A., Davies M. J. Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radic Biol Med. 1998 May;24(7-8):1242–1249. doi: 10.1016/s0891-5849(97)00440-1. [DOI] [PubMed] [Google Scholar]
  35. Miles A. M., Wink D. A., Cook J. C., Grisham M. B. Determination of nitric oxide using fluorescence spectroscopy. Methods Enzymol. 1996;268:105–120. doi: 10.1016/s0076-6879(96)68013-6. [DOI] [PubMed] [Google Scholar]
  36. Millar A. H., Day D. A. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 1996 Dec 2;398(2-3):155–158. doi: 10.1016/s0014-5793(96)01230-6. [DOI] [PubMed] [Google Scholar]
  37. Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol. 1996 Sep 1;6(9):1104–1113. doi: 10.1016/s0960-9822(02)70677-5. [DOI] [PubMed] [Google Scholar]
  38. Mulvaney C. S., Hageman R. H. Acetaldehyde Oxime, A Product Formed during the In Vivo Nitrate Reductase Assay of Soybean Leaves. Plant Physiol. 1984 Sep;76(1):118–124. doi: 10.1104/pp.76.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nakatsubo N., Kojima H., Kikuchi K., Nagoshi H., Hirata Y., Maeda D., Imai Y., Irimura T., Nagano T. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett. 1998 May 8;427(2):263–266. doi: 10.1016/s0014-5793(98)00440-2. [DOI] [PubMed] [Google Scholar]
  40. Nelson R. S., Ryan S. A., Harper J. E. Soybean mutants lacking constitutive nitrate reductase activity : I. Selection and initial plant characterization. Plant Physiol. 1983 Jun;72(2):503–509. doi: 10.1104/pp.72.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nicholas J. C., Harper J. E., Hageman R. H. Nitrate Reductase Activity in Soybeans (Glycine max [L.] Merr.): I. Effects of Light and Temperature. Plant Physiol. 1976 Dec;58(6):731–735. doi: 10.1104/pp.58.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ninnemann H., Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol. 1996 Aug;64(2):393–398. doi: 10.1111/j.1751-1097.1996.tb02477.x. [DOI] [PubMed] [Google Scholar]
  43. Purczeld P., Chon C. J., Portis A. R., Jr, Heldt H. W., Heber U. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with nitrite-mediated proton transfer across the envelope. Biochim Biophys Acta. 1978 Mar 13;501(3):488–498. doi: 10.1016/0005-2728(78)90116-0. [DOI] [PubMed] [Google Scholar]
  44. Radi R. Kinetic analysis of reactivity of peroxynitrite with biomolecules. Methods Enzymol. 1996;269:354–366. doi: 10.1016/s0076-6879(96)69036-3. [DOI] [PubMed] [Google Scholar]
  45. Ribeiro E. A., Jr, Cunha F. Q., Tamashiro W. M., Martins I. S. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett. 1999 Feb 26;445(2-3):283–286. doi: 10.1016/s0014-5793(99)00138-6. [DOI] [PubMed] [Google Scholar]
  46. Rubbo H., Freeman B. A. Nitric oxide regulation of lipid oxidation reactions: formation and analysis of nitrogen-containing oxidized lipid derivatives. Methods Enzymol. 1996;269:385–394. doi: 10.1016/s0076-6879(96)69039-9. [DOI] [PubMed] [Google Scholar]
  47. Ryan S. A., Nelson R. S., Harper J. E. Soybean Mutants Lacking Constitutive Nitrate Reductase Activity : II. Nitrogen Assimilation, Chlorate Resistance, and Inheritance. Plant Physiol. 1983 Jun;72(2):510–514. doi: 10.1104/pp.72.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Scheidegger R., Pande A. K., Bounds P. L., Koppenol W. H. The reaction of peroxynitrite with zeaxanthin. Nitric Oxide. 1998;2(1):8–16. doi: 10.1006/niox.1997.0156. [DOI] [PubMed] [Google Scholar]
  49. Schmidt K., Mayer B. Determination of NO with a Clark-type electrode. Methods Mol Biol. 1998;100:101–109. doi: 10.1385/1-59259-749-1:101. [DOI] [PubMed] [Google Scholar]
  50. Seemann J. R., Sharkey T. D., Wang J., Osmond C. B. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 1987 Jul;84(3):796–802. doi: 10.1104/pp.84.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shingles R., Roh M. H., McCarty R. E. Nitrite Transport in Chloroplast Inner Envelope Vesicles (I. Direct Measurement of Proton-Linked Transport). Plant Physiol. 1996 Nov;112(3):1375–1381. doi: 10.1104/pp.112.3.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Squadrito G. L., Pryor W. A. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998 Sep;25(4-5):392–403. doi: 10.1016/s0891-5849(98)00095-1. [DOI] [PubMed] [Google Scholar]
  53. Stitt M. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol. 1999 Jun;2(3):178–186. doi: 10.1016/S1369-5266(99)80033-8. [DOI] [PubMed] [Google Scholar]
  54. Streit L., Nelson R. S., Harper J. E. Nitrate Reductases from Wild-Type and nr(1)-Mutant Soybean (Glycine max [L.] Merr.) Leaves : I. Purification, Kinetics, and Physical Properties. Plant Physiol. 1985 May;78(1):80–84. doi: 10.1104/pp.78.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Taylor O. C., Eaton F. M. Suppression of plant growth by nitrogen dioxide. Plant Physiol. 1966 Jan;41(1):132–135. doi: 10.1104/pp.41.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Vaucheret H., Kronenberger J., Lepingle A., Vilaine F., Boutin J. P., Caboche M. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 1992 Jul;2(4):559–569. [PubMed] [Google Scholar]
  57. Weitzberg E., Lundberg J. O. Nonenzymatic nitric oxide production in humans. Nitric Oxide. 1998;2(1):1–7. doi: 10.1006/niox.1997.0162. [DOI] [PubMed] [Google Scholar]
  58. Wink D. A., Mitchell J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998 Sep;25(4-5):434–456. doi: 10.1016/s0891-5849(98)00092-6. [DOI] [PubMed] [Google Scholar]
  59. Yamasaki H., Grace S. C. EPR detection of phytophenoxyl radicals stabilized by zinc ions: evidence for the redox coupling of plant phenolics with ascorbate in the H2O2-peroxidase system. FEBS Lett. 1998 Feb 6;422(3):377–380. doi: 10.1016/s0014-5793(98)00048-9. [DOI] [PubMed] [Google Scholar]
  60. Yamasaki H., Sakihama Y., Ikehara N. Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2. Plant Physiol. 1997 Dec;115(4):1405–1412. doi: 10.1104/pp.115.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yamasaki H., Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett. 2000 Feb 18;468(1):89–92. doi: 10.1016/s0014-5793(00)01203-5. [DOI] [PubMed] [Google Scholar]
  62. Yamasaki H., Uefuji H., Sakihama Y. Bleaching of the red anthocyanin induced by superoxide radical. Arch Biochem Biophys. 1996 Aug 1;332(1):183–186. doi: 10.1006/abbi.1996.0331. [DOI] [PubMed] [Google Scholar]
  63. Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci. 1999 Apr;4(4):128–129. doi: 10.1016/s1360-1385(99)01393-x. [DOI] [PubMed] [Google Scholar]
  64. Yamato M., Ando J., Sakaki K., Hashigaki K., Wataya Y., Tsukagoshi S., Tashiro T., Tsuruo T. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. J Med Chem. 1992 Jan 24;35(2):267–273. doi: 10.1021/jm00080a010. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES