Abstract
Chloroplasts are cytoplasmic organelles whose primary function is photosynthesis, but which also contain small, specialized and quasi-autonomous genetic systems. In photosynthesis, two energy converting photosystems are connected, electrochemically, in series. The connecting electron carriers are oxidized by photosystem I (PS I) and reduced by photosystem II (PS II). It has recently been shown that the oxidation reduction state of one connecting electron carrier, plastoquinone, controls transcription of chloroplast genes for reaction centre proteins of the two photosystems. The control counteracts the imbalance in electron transport that causes it: oxidized plastoquinone induces PS II and represses PS I; reduced plastoquinone induces PS I and represses PS II. This complementarity is observed both in vivo, using light favouring one or other photosystem, and in vitro, when site-specific electron transport inhibitors are added to transcriptionally and photosynthetically active chloroplasts. There is thus a transcriptional level of control that has a regulatory function similar to that of purely post-translational 'state transitions' in which the redistribution of absorbed excitation energy between photosystems is mediated by thylakoid membrane protein phosphorylation. The changes in rates of transcription that are induced by spectral changes in vivo can be detected even before the corresponding state transitions are complete, suggesting the operation of a branched pathway of redox signal transduction. These findings suggest a mechanism for adjustment of photosystem stoichiometry in which initial events involve a sensor of the redox state of plastoquinone, and may thus be the same as the initial events of state transitions. Redox control of chloroplast transcription is also consistent with the proposal that a direct regulatory coupling between electron transport and gene expression determines the function and composition of the chloroplast's extra-nuclear genetic system.
Full Text
The Full Text of this article is available as a PDF (250.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol. 1993 Dec 21;165(4):609–631. doi: 10.1006/jtbi.1993.1210. [DOI] [PubMed] [Google Scholar]
- Allen J. F. Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta. 1992 Jan 22;1098(3):275–335. doi: 10.1016/s0005-2728(09)91014-3. [DOI] [PubMed] [Google Scholar]
- Allen J. F., Raven J. A. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996 May;42(5):482–492. doi: 10.1007/BF02352278. [DOI] [PubMed] [Google Scholar]
- Allen J. F. Separate sexes and the mitochondrial theory of ageing. J Theor Biol. 1996 May 21;180(2):135–140. doi: 10.1006/jtbi.1996.0089. [DOI] [PubMed] [Google Scholar]
- Anderson J. M., Goodchild D. J., Boardman N. K. Composition of the photosystems and chloroplast structure in extreme shade plants. Biochim Biophys Acta. 1973 Dec 14;325(3):573–585. doi: 10.1016/0005-2728(73)90217-x. [DOI] [PubMed] [Google Scholar]
- Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
- Bonaventura C., Myers J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta. 1969;189(3):366–383. doi: 10.1016/0005-2728(69)90168-6. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci. 1987;503:55–71. doi: 10.1111/j.1749-6632.1987.tb40597.x. [DOI] [PubMed] [Google Scholar]
- Chow W. S., Melis A., Anderson J. M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7502–7506. doi: 10.1073/pnas.87.19.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danon A., Mayfield S. P. Light-regulated translation of chloroplast messenger RNAs through redox potential. Science. 1994 Dec 9;266(5191):1717–1719. doi: 10.1126/science.7992056. [DOI] [PubMed] [Google Scholar]
- Escobar Galvis M. L., Allen J. F., Hâkansson G. Protein synthesis by isolated pea mitochondria is dependent on the activity of respiratory complex II. Curr Genet. 1998 May;33(5):320–329. doi: 10.1007/s002940050343. [DOI] [PubMed] [Google Scholar]
- Escoubas J. M., Lomas M., LaRoche J., Falkowski P. G. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10237–10241. doi: 10.1073/pnas.92.22.10237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison M. A., Keen J. N., Findlay J. B., Allen J. F. Modification of a glnB-like gene product by photosynthetic electron transport in the cyanobacterium Synechococcus 6301. FEBS Lett. 1990 May 7;264(1):25–28. doi: 10.1016/0014-5793(90)80755-8. [DOI] [PubMed] [Google Scholar]
- Kim J. H., Glick R. E., Melis A. Dynamics of Photosystem Stoichiometry Adjustment by Light Quality in Chloroplasts. Plant Physiol. 1993 May;102(1):181–190. doi: 10.1104/pp.102.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin W., Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998 Mar 5;392(6671):37–41. doi: 10.1038/32096. [DOI] [PubMed] [Google Scholar]
- Maxwell D. P., Laudenbach D. E., Huner NPA. Redox Regulation of Light-Harvesting Complex II and cab mRNA Abundance in Dunaliella salina. Plant Physiol. 1995 Nov;109(3):787–795. doi: 10.1104/pp.109.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 1976 Oct 21;62(2):327–367. doi: 10.1016/0022-5193(76)90124-7. [DOI] [PubMed] [Google Scholar]
- Murata N. Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta. 1969 Feb 25;172(2):242–251. doi: 10.1016/0005-2728(69)90067-x. [DOI] [PubMed] [Google Scholar]
- Nilsson A., Stys D., Drakenberg T., Spangfort M. D., Forsén S., Allen J. F. Phosphorylation controls the three-dimensional structure of plant light harvesting complex II. J Biol Chem. 1997 Jul 18;272(29):18350–18357. doi: 10.1074/jbc.272.29.18350. [DOI] [PubMed] [Google Scholar]
- Pfannschmidt T., Nilsson A., Tullberg A., Link G., Allen J. F. Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life. 1999 Sep;48(3):271–276. doi: 10.1080/713803507. [DOI] [PubMed] [Google Scholar]
- Silverstein T., Cheng L., Allen J. F. Chloroplast thylakoid protein phosphatase reactions are redox-independent and kinetically heterogeneous. FEBS Lett. 1993 Nov 8;334(1):101–105. doi: 10.1016/0014-5793(93)81690-2. [DOI] [PubMed] [Google Scholar]
- Tsinoremas N. F., Castets A. M., Harrison M. A., Allen J. F., Tandeau de Marsac N. Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4565–4569. doi: 10.1073/pnas.88.11.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tullberg A., Håkansson G., Race H. L. A protein tyrosine kinase of chloroplast thylakoid membranes phosphorylates light harvesting complex II proteins. Biochem Biophys Res Commun. 1998 Sep 29;250(3):617–622. doi: 10.1006/bbrc.1998.9359. [DOI] [PubMed] [Google Scholar]
- Whatley J. M., John P., Whatley F. R. From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):165–187. doi: 10.1098/rspb.1979.0020. [DOI] [PubMed] [Google Scholar]
- Zito F., Finazzi G., Delosme R., Nitschke W., Picot D., Wollman F. A. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 1999 Jun 1;18(11):2961–2969. doi: 10.1093/emboj/18.11.2961. [DOI] [PMC free article] [PubMed] [Google Scholar]