Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Nov 29;355(1403):1607–1613. doi: 10.1098/rstb.2000.0722

Mutualism, parasitism and competition in the evolution of coviruses.

S Nee 1
PMCID: PMC1692892  PMID: 11127906

Abstract

Coviruses are viruses with the property that their genetic information is divided up among two or more different viral particles. I model the evolution of coviruses using information on both viral virulence and the interactions between viruses and molecules that parasitize them: satellite viruses, satellite RNAs and defective interfering viruses. The model ultimately, and inevitably contains within it single-species dynamics as well as mutualistic, parasitic, cooperative and competitive relationships. The model shows that coexistence between coviruses and the self-sufficient viruses that spawned them is unlikely, in the sense that the quantitative conditions for coexistence are not easy to satisfy I also describe an abrupt transition from mutualistic two-species to single-species dynamics, showing a new sense in which questions such as 'Is a lichen one species or two?' can be given a definite answer.

Full Text

The Full Text of this article is available as a PDF (208.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aranda M. A., Fraile A., Dopazo J., Malpica J. M., García-Arenal F. Contribution of mutation and RNA recombination to the evolution of a plant pathogenic RNA. J Mol Evol. 1997 Jan;44(1):81–88. doi: 10.1007/PL00006124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Celix A., Rodriguez-Cerezo E., Garcia-Arenal F. New satellite RNAs, but no DI RNAs, are found in natural populations of tomato bushy stunt tombusvirus. Virology. 1997 Dec 22;239(2):277–284. doi: 10.1006/viro.1997.8864. [DOI] [PubMed] [Google Scholar]
  3. Falk B. W., Tian T., Yeh H. H. Luteovirus-associated viruses and subviral RNAs. Curr Top Microbiol Immunol. 1999;239:159–175. doi: 10.1007/978-3-662-09796-0_9. [DOI] [PubMed] [Google Scholar]
  4. García-Arenal F., Palukaitis P. Structure and functional relationships of satellite RNAs of cucumber mosaic virus. Curr Top Microbiol Immunol. 1999;239:37–63. doi: 10.1007/978-3-662-09796-0_3. [DOI] [PubMed] [Google Scholar]
  5. Grieco F., Lanave C., Gallitelli D. Evolutionary dynamics of cucumber mosaic virus satellite RNA during natural epidemics in Italy. Virology. 1997 Mar 3;229(1):166–174. doi: 10.1006/viro.1996.8426. [DOI] [PubMed] [Google Scholar]
  6. Hillman B. I., Carrington J. C., Morris T. J. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell. 1987 Nov 6;51(3):427–433. doi: 10.1016/0092-8674(87)90638-6. [DOI] [PubMed] [Google Scholar]
  7. Lande R. Genetics and demography in biological conservation. Science. 1988 Sep 16;241(4872):1455–1460. doi: 10.1126/science.3420403. [DOI] [PubMed] [Google Scholar]
  8. Li X. H., Heaton L. A., Morris T. J., Simon A. E. Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9173–9177. doi: 10.1073/pnas.86.23.9173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mayo M. A., Taliansky M. E., Fritsch C. Large satellite RNA: molecular parasitism or molecular symbiosis. Curr Top Microbiol Immunol. 1999;239:65–79. doi: 10.1007/978-3-662-09796-0_4. [DOI] [PubMed] [Google Scholar]
  10. Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
  11. O'Neill F. J., Maryon E. B., Carroll D. Isolation and characterization of defective simian virus 40 genomes which complement for infectivity. J Virol. 1982 Jul;43(1):18–25. doi: 10.1128/jvi.43.1.18-25.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scholthof K. B., Jones R. W., Jackson A. O. Biology and structure of plant satellite viruses activated by icosahedral helper viruses. Curr Top Microbiol Immunol. 1999;239:123–143. doi: 10.1007/978-3-662-09796-0_7. [DOI] [PubMed] [Google Scholar]
  13. Simon A. E. Replication, recombination, and symptom-modulation properties of the satellite RNAs of turnip crinkle virus. Curr Top Microbiol Immunol. 1999;239:19–36. doi: 10.1007/978-3-662-09796-0_2. [DOI] [PubMed] [Google Scholar]
  14. Taylor J. M. Human hepatitis delta virus: an agent with similarities to certain satellite RNAs of plants. Curr Top Microbiol Immunol. 1999;239:107–122. doi: 10.1007/978-3-662-09796-0_6. [DOI] [PubMed] [Google Scholar]
  15. White K. A., Morris T. J. Defective and defective interfering RNAs of monopartite plus-strand RNA plant viruses. Curr Top Microbiol Immunol. 1999;239:1–17. doi: 10.1007/978-3-662-09796-0_1. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES